Training session 3 'Groups and symmetries in geometry'

Give arguments for all your claims. Write complete sentences, including quantifiers.

1. Let n be in \mathbb{N} .

- (a) Prove that for all $A \in M_n(\mathbb{C})$ the series $e^A := \sum_{m \geq 0} \frac{1}{m!} A^m$ converges in $M_n(\mathbb{C})$. Hint: choose a norm on $M_n(\mathbb{C})$, for example $||A|| := \max\{|A_{i,j}| : 1 \leq i, j \leq n\}$, or any other norm (they are all equivalent).
- (b) Show that for A and B in $M_n(\mathbb{C})$ with AB = BA we have $e^{A+B} = e^A e^B$.
- (c) Give A and B in $M_n(\mathbb{C})$ such that $e^{A+B} \neq e^A e^B$.
- (d) Show that $det(e^A) = e^{tr(A)}$. Hint: show that it suffices to prove it for diagonalisable A, and then reduce to diagonal A.
- 2. Let G be a Lie group. Show that $Ad: G \to Aut(\mathfrak{g}), g \mapsto (D\psi_g)(1)$ is a representation of G on \mathfrak{g} . Here $\psi_g: G \to G$, $h \mapsto ghg^{-1}$, and $(D\psi_g)(1): \mathfrak{g} \to \mathfrak{g}$ is the derivative of ψ_g at the identity element 1 of G. See also Benthem's BSc thesis. First consider the case $G = GL_n$.

This question can be generalised as follows. Let X be a manifold and let G act on X, such that the map $G \times X \to X$ is a morphism of manifolds. Suppose that G fixes a point x in X, Then G acts on the tangent space $T_X(x)$ and this is a representation of G on $T_X(x)$.

- 3. Let G be a group, let X be a set, and $G \times X \to X$, $(g,x) \mapsto g \cdot x$ an action of G on X.
 - (a) Let \mathbb{C}^X be the set of all functions $f \colon X \to \mathbb{C}$. Show that $G \times \mathbb{C}^X \to \mathbb{C}^X$, $(g, f) \mapsto g \bullet f$, with, for all $x \in X$, $(g \bullet f)(x) = f(g^{-1}x)$, is an action of G on \mathbb{C}^X .
 - (b) Show that the action in the previous part is linear, where addition and scalar multiplication in \mathbb{C}^X are point-wise $((f_1 + f_2)(x) = f_1(x) + f_2(x), (\lambda \cdot f)(x) = \lambda \cdot (f(x)))$, hence makes \mathbb{C}^X into a representation of G.
 - (c) The \mathbb{C} -vector space \mathbb{C}^X is even a \mathbb{C} -algebra: $(f_1 \cdot f_2)(x) = f_1(x) \cdot f_2(x)$ (point-wise multiplication). Show that the action in the previous part is by \mathbb{C} -algebra automorphisms: for each g in G, the map $\mathbb{C}^X \to \mathbb{C}^X$, $f \mapsto g \bullet f$ is an isomorphism of \mathbb{C} -algebras.

- (d) Now we take $G = \mathrm{SU}(2)$ and $X = \mathbb{C}^2$, and the action is $\begin{pmatrix} a & -\overline{b} \\ b & \overline{a} \end{pmatrix} \cdot \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} au \overline{b}v \\ bu \overline{a}v \end{pmatrix}$. In $\mathbb{C}^X = \mathbb{C}^{(\mathbb{C}^2)}$ we have the sub- \mathbb{C} -algebra $\mathbb{C}[x,y]$ of polynomial functions $\mathbb{C}^2 \to \mathbb{C}$, with x(u,v) = u and y(u,v) = v. Compute, for $\begin{pmatrix} a & -\overline{b} \\ b & \overline{a} \end{pmatrix}$ in $\mathrm{SU}(2)$, $\begin{pmatrix} a & -\overline{b} \\ b & \overline{a} \end{pmatrix} \bullet x$ and $\begin{pmatrix} a & -\overline{b} \\ b & \overline{a} \end{pmatrix} \bullet y$. You should find $\overline{a}x + \overline{b}y$ and -bx + ay.
- (e) Conclude that the SU(2)-action on \mathbb{C}^X preserves $\mathbb{C}[x,y]$, and that

$$\begin{pmatrix} a & -\overline{b} \\ b & \overline{a} \end{pmatrix} \bullet (x^j y^k) = (\overline{a}x + \overline{b}y)^j \cdot (-bx + ay)^k.$$

Show that this agrees with the identities on page 10 of Benthem's BSc thesis.

- 4. On page 12 of Benthem's BSc thesis it is written that $\ker(SU(2) \to SO(3))$ is the intersection of $SU(2) = \{x \in \mathbb{H} : N(x) = 1\}$ with the center $Z(\mathbb{H}) = \{x \in \mathbb{H} : \forall y \in \mathbb{H}, xy = yx\}$, and that intersection is $\{1, -1\}$. We provide details.
 - (a) Prove that $Z(\mathbb{H}) = \mathbb{R} \cdot 1 \subset \mathbb{H}$.
 - (b) Prove that if $x \in SU(2)$ is such that, for all $y \in \mathbb{R} \cdot I + \mathbb{R} \cdot J + \mathbb{R} \cdot K$, $xyx^{-1} = y$, then $x \in Z(\mathbb{H})$.
- 5. Prove the formula of Clebsch-Gordan, which means for us, prove that for d_1 and d_2 in $\mathbb{Z}_{\geq 0}$, there is an isomorphism of representations of SU(2):

$$\mathbb{C}[x,y]_{d_1} \otimes \mathbb{C}[x,y]_{d_2} \longrightarrow \bigoplus_{\substack{d=|d_1-d_2|\\ d\equiv d_1+d_2 \bmod 2}}^{d_1+d_2} \mathbb{C}[x,y]_d.$$

Hint: prove that both sides have the same character. Try first with small values for d_1 and d_2 . Physicists use this to understand the total angular momentum (around some given direction) of an atom with 2 electrons; see wikipedia.

- 6. (a) Let g be in O(3), with $g \neq \text{id}$. Show that the complex eigenvalues λ of g satisfy $|\lambda| = 1$, and that if λ is an eigenvalue, then so is $\overline{\lambda}$. Show that 1 or -1 is an eigenvalue of λ .
 - (b) Let g be in SO(3), with $g \neq \text{id}$. Show that there is a unique $\phi \in [0, \pi]$ such that the complex eigenvalues of g are 1, $e^{i\phi}$ and $e^{-i\phi}$. Deduce from this that there is an oriented orthonormal basis v_1, v_2, v_3 of \mathbb{R}^3 such that g is the rotation about the line $\mathbb{R} \cdot v_3$ over the angle ϕ , and that with respect to the oriented basis $v_2, v_1, -v_3$ g is the rotation about $\mathbb{R} \cdot v_3$ over the angle $-\phi$.
 - (c) Make a character table for SO(3).