Exercises sheet 1 for the course Modular Forms Group Actions in Arithmetic and Geometry A CIMPA research school on Gadjah Mada University Yogyakarta, Indonesia

1. Use Cauchy integral formulas to prove that every bounded entire function is constant. (An entire function is a function holomorphic on all of \mathbb{C})

2. Prove that every complex non constant polynomials has a root in \mathbb{C} .

3.Let f be meromorphic in Ω , and $a \in \Omega$. prove that $\operatorname{res}_a(f'/f) = \operatorname{ord}_a(f)$ if f is not constantly zero on Ω .

3. Compute the residue of the following function at the specified points

•
$$f(z) = \frac{z^3 - 1}{z^2 - 2z + 1}$$
 at $z = 1$
• $f(z) = \frac{\exp(z)}{z^2 - 1}$ at $z = 1$
• $f(z) = \frac{\exp(iz)}{z^2 + i}$ at $z = i$.

• $f(z) = \frac{1}{z^2 + i}^3$ at z = i

5. Let f be a meromorphic periodic function. Prove that one of the following holds:

- f is simply periodic, i.e. the periods of f are of the form $n\omega_0, n\in\mathbb{Z}$.
- f is doubly periodic i.e. the periods of are of the form $n_1\omega_1 + n_2\omega_2$, $n_1, n_2 \in \mathbb{Z}$, and ω_1 and ω_2 linearly independent over \mathbb{R} .

6. Let Λ be a lattice in \mathbb{C} . Prove that if $f \in M(\Lambda)$ then f must have at least one pole.

7. Let Λ be a lattice in \mathbb{C} and Π a fundamental parallelogram for Λ . Prove that if $f, g \in M(\Lambda)$ are such that $\operatorname{ord}_a(f) = \operatorname{ord}_a(g)$ for all $a \in \Pi$, then f/g is constant.

8. Let f be an elliptic function with period lattices Λ . Prove the followings assertions

- $\sum_{a \in \Pi} \operatorname{res}_a(f) = 0$ $\sum_{a \in \Pi} \operatorname{ord}_a(f) = 0$ $\sum_{a \in \Pi} \operatorname{ord}_a(f) a \equiv 0 \mod \Lambda$
- An elliptic function cannot have only a simple pole in a fundamental domain.

9. Let $\Lambda \in \mathbb{C}$ be a lattice. Prove that every f(z) can be written in the following form

$$f(z) = R_1(\wp_{\Lambda}(z)) + \wp_{\Lambda}'(z)R_2(\wp_{\Lambda}(z))$$

where R_1 and R_2 rational functions.

10.

- (a) Prove that if $\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \gamma \in \overline{\Gamma(1)}$ is such that $\gamma(\tau_1) = \tau_2$ for some $\tau_1, \tau_2 \in \tilde{\mathcal{F}}$ then $c \in \{-1, 0, 1\}$. (b) Prove that if $\begin{pmatrix} a & b \\ 1 & d \end{pmatrix} = \gamma \in \overline{\Gamma(1)}$ is such that $\gamma(\tau_1) = \tau_2$ for some $\tau_1, \tau_2 \in \tilde{\mathcal{F}}$, then $d \in \{-1, 0, 1\}$. (c) Prove that if $\begin{pmatrix} a & b \\ 1 & 0 \end{pmatrix} = \gamma \in \overline{\Gamma(1)}$ is such that $\gamma(\tau_1) = \tau_2$ for some $\tau_1, \tau_2 \in \tilde{\mathcal{F}}$, then b = -1 and $a \in \{-1, 0, 1\}$.
- Moreover, for each $a \in \{-1, 0, 1\}$, described which are the possible τ_1 and τ_2 (note that $\tau_1 = \tau_2$ is admissible).

11. Suppose that τ_1, τ_2 belong to \mathfrak{h} and that $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and $\begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}$ are such that: $1 = \alpha(c\tau_1 + d), \quad \tau_2 = \alpha(a\tau_1 + b), \quad 1 = \alpha^{-1}(c'\tau_2 + d'), \quad \tau_1 = \alpha^{-1}(a'\tau_2 + b')$

for some $\alpha \in \mathbb{C}^*$. Prove that $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and $\begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}$ are inverse of each other.