CIMPA Research School Yogyakarta

Galois Theory Exercises — February 20, 2020

- **1.** Compute the Galois group Gal(f) for the polynomial $f = X^3 2 \in F[X]$ when F is equal to \mathbb{R} , \mathbb{F}_5 , and \mathbb{F}_7 . Same question for $f = X^4 2$.
- **2.** Show that the cyclotomic extension $\mathbf{Q} \subset \mathbf{Q}(\zeta_7)$ has exactly two non-trivial intermediate fields. For each of them, find the irreducible polynomial of an element that generates the extension over \mathbf{Q} .
- **3.** Find all subfields of the cyclotomic field $\mathbf{Q}(\zeta_{15})$, and indicate which subgroups of $(\mathbf{Z}/15\mathbf{Z})^*$ they correspond to.
- **4.** Let p be a prime number and $f \in \mathbf{Q}[X]$ an irreducible polynomial of degree p having exactly p-2 real roots.
 - a. Show that Gal(f) contains an element that swaps 2 roots of f, and fixes all other roots.
 - b. Show that Gal(f) contains an element that permutes all the roots of f cyclically.
 - c. Prove: $Gal(f) \cong S_p$.
- **5.** Let p = 2k + 3 be a prime number, and define

$$f = (X^2 + 2) \prod_{i=-k}^{k} (X - 2i) + 2 \in \mathbf{Q}[X].$$

- a. Show that f is irreducible of degree p.
- b. Show that its derivative f' does not have p-1 real roots. [Hint: f' is even and f'(0) has sign $(-1)^k$.]
- c. Show that f has exactly p-2 real roots, and Galois group $Gal(f) \cong S_p$.
- **6.** Let $f \in K[X]$ be a polynomial of degree n with Galois group S_n . Let $L = K(\alpha)$ be the extension of K obtained through the adjunction of a zero of f, and E an intermediate field of the extension $K \subset L$. Prove: E = K or E = L.
- 7. Let L be a splitting field of the polynomial $f = X^4 + 20 \in \mathbf{Q}[X]$. Determine $\mathrm{Gal}(f)$ and the diagram of intermediate fields of the extension $\mathbf{Q} \subset L$.
- 8. Do likewise for $f = X^4 4X^2 + 5$ and $f = X^4 5X^2 5$.
- **9.** Let $L = \mathbf{Q}(X)$ be the field of rational functions over \mathbf{Q} . Define $\sigma_i \in \mathrm{Aut}(L)$ by

$$\sigma_1(X) = -X, \qquad \sigma_2(X) = 1/X, \qquad \sigma_3(X) = 1 - X.$$

- a. Determine the field of invariants $L^{\langle \sigma_i \rangle}$ for $i \in \{1, 2, 3\}$.
- a. Show that $\rho = \sigma_2 \sigma_3$ has order 3 in Aut(L), and determine $L^{\langle \rho \rangle}$.
- c. Show that $G = \langle \sigma_2, \sigma_3 \rangle$ has order 6 and is isomorphic to S_3 . Determine $f \in \mathbf{Q}(X)$ with $L^G = \mathbf{Q}(f)$.
- **10.** Let $f = p/q \in \mathbf{Q}(X)$ be the quotient of coprime polynomials $p, q \in \mathbf{Q}[X]$ of degree m and n. Prove: if f is not constant, then $\mathbf{Q}(f) \subset \mathbf{Q}(X)$ is an algebraic extension of degree $\max(m, n)$.
- 11. Let $K = \mathbf{F}_p(X)$ be the field of rational functions over \mathbf{F}_p and $\sigma \in \operatorname{Aut}(L)$ the automorphism satisfying $\sigma(X) = X + 1$. Show that $G = \langle \sigma \rangle$ is cyclic of order p, and that for $f = X^p X$, the extension $\mathbf{F}_p(f) \subset \mathbf{F}_p(X)$ is Galois with group G.
- **12.** For $L = \mathbf{Q}(X)$, we define $\sigma \in \mathrm{Aut}(L)$ by $\sigma(X) = X + 1$. Prove that $G = \langle \sigma \rangle$ is an infinite subgroup of $\mathrm{Aut}(L)$, and that $L^G \subset L$ is *not* an algebraic extension. Also show that, in this case, the map $H \mapsto L^H$ from the set of subgroups of G to the set of subfields of L is neither injective nor surjective.