The goal of these exercises is to compute the character table of the alternating group A_5 .

- 1. Show that all 3-cycles are conjugate in A_5 . Show that the 5-cycles are the union of two conjugacy classes. Show that A_5 has 5 conjugacy classes.
- 2. Show that the only 1-dimensional representation of A_5 is the trivial one.
- 3. Let ρ_4 denote the representation of A_5 given by permuting the coordinates of the 4-dimensional vector space $\{\mathbf{v} \in \mathbf{C}^5 : \sum_i v_i = 0\}$. Determine the character χ_4 of ρ_4 . Show that $\langle \chi_4, \chi_4 \rangle = 1$ and deduce that ρ_4 is irreducible.
- 4. Show that the only solutions in integers $a, b, c \geq 2$ of the equation

$$1^2 + 4^2 + a^2 + b^2 + c^2 = 60$$

are given by 5, 3, 3. Deduce that A_5 admits three non-isomorphic irreducible representations ρ_5 , ρ_3 and ρ_3' of dimensions 5, 3 and 3 respectively.

This leads to the following partial character table. The second row contains the cardinalities of the corresponding conjugacy classes.

Table 1.

	(1)	(12)(34)	(123)	(12345)	$(12345)^2$
#	1	15	20	12	12
1	1	1	1	1	1
$ ho_4$	4	0	1	-1	-1
$ ho_5$	5				
ρ_3	3				
$ ho_3'$	3				

- 5. Let G be a finite group and let χ_V be the character of a representation V of G. Show that for any $\sigma \in G$ the numbers $\chi_V(\sigma)$ and $\chi_V(\sigma^{-1})$ are complex conjugate. Show that if $\sigma \in G$ is conjugate to its inverse, then $\chi_V(\sigma) \in \mathbf{R}$.
- 6. Let G be a finite group and let χ_V be the character of some d-dimensional representation V of G. Show: if $\sigma \in G$ has order m, then $\chi_V(\sigma)$ is a sum of d roots of unity of order dividing m.
- 7. Show that the missing entries u, v, w in the third column (the one of (123)) are in **Z**. Show that $u^2 + v^2 + w^2 = 1$. Determine the third column. (Hint: use the second orthogonality relation below and show that the 1st and 3rd columns are orthogonal).
- 8. Show that the missing entries r, s, t in the second column are in **R** and satisfy $r^2 + s^2 + t^2 = 3$. Show that they are all equal to ± 1 .
- 9. Let χ_5 denote the characer of ρ_5 . Show that $\chi_5(\sigma) = +1$ for $\sigma = (12)(34)$. (Hint: the 2nd and 3rd columns are othogonal).
- 10. Show that the remaining two entries in the 2nd column are equal to -1. (Hint: the 1st and 2nd columns are orthogonal).
- 11. Let $x, y \in \mathbf{C}$ be the rightmost two entries in the row of ρ_5 . Show that the square of the length of ρ_5 is $\frac{1}{60}(5^2 + 15 + 20 + x\overline{x} + y\overline{y})$. Deduce that x = y = 0.

This leads to the following partial character table.

Table 2.

	(1)	(12)(34)	(123)	(12345)	$(12345)^2$
#	1	15	20	12	12
1	1	1	1	1	1
$ ho_4$	4	0	1	-1	-1
$ ho_5$	5	1	-1	0	0
ρ_3	3	-1	0		
$ ho_3'$	3	-1	0		

12. Using orthogonality of various rows and/or columns, show that the 2×2 -matrix of the missing four entries is of the form

$$\begin{pmatrix} a & 1-a \\ 1-a & a \end{pmatrix},$$

where $a = \frac{1}{2} \pm \frac{1}{2}\sqrt{5}$. It is a zero of the polynomial $X^2 - X - 1$.

This leads to the following complete character table. The two 3-dimensional representations realize A_5 as a subgroup of $SO_3(\mathbf{R})$. The A_5 -orbit of any non-zero point in \mathbf{R}^3 is the set of vertices of a regular icosahedron.

Table 3.

	(1)	(12)(34)	(123)	(12345)	$(12345)^2$
#	1	15	20	12	12
1	1	1	1	1	1
$ ho_4$	4	0	1	-1	-1
$ ho_5$	5	1	-1	0	0
ρ_3	3	-1	0	$\frac{1}{2} + \frac{1}{2}\sqrt{5}$	$\frac{1}{2} - \frac{1}{2}\sqrt{5}$
$ ho_3'$	3	-1	0	$\frac{1}{2} - \frac{1}{2}\sqrt{5}$	$\frac{1}{2} + \frac{1}{2}\sqrt{5}$

Orthogonality relations.

For any two irreducible representations $V,\,V'$ of a finite group G we have

$$\sum_{\sigma \in G \text{ up to conj.}} \#c(\sigma) \chi_V(\sigma) \overline{\chi_{V'}(\sigma)} = \begin{cases} \#G, & \text{if } V \cong V'; \\ 0, & \text{otherwise.} \end{cases}$$

Here $c(\sigma)$ denotes the conjugacy class of σ .

For all $\sigma, \tau \in G$ we have

$$\sum_{\text{virr.}} \chi_V(\sigma) \overline{\chi_V(\tau)} = \begin{cases} \# \text{Cent}(\sigma), & \text{if } \sigma \text{ and } \tau \text{ are conjugate;} \\ 0, & \text{otherwise.} \end{cases}$$

Here $Cent(\sigma)$ denotes the centralizer of σ in G.