
Representations of finite groups: examples Jogjakarta, February 2020

Exercise 1. (1) Determine the center of Dn. (2) Determine the conjugacy classes of Dn.
(It might help a little to know that, if n is even, then there are n/2 + 3 conjugacy classes,
and if n is odd then there are (n− 1)/2 + 2. conjugacy classes.)

Sol.: Recall that Dn is the group generated by elements r and s, satisfying

rn = s2 = 1, srk = r−ks, k = 1, . . . , n.

(1) If n = 2, the goup D2 is isomorphic to Z2 × Z2 and coincides with its center. If n is
even an n > 2, then the group is non-abelian. In particular no reflection can be in the
center. The element rn/2 is central: it commutes with the rk’s and also with s, because
rn = 1 implies rn/2 = r−n/2. Since rn/2 is the only power of r with this property, it follows
that Z(Dn) = {1, rn/2}.
If n is odd, no power of r is equal to its inverse. Therefore no power of r commutes with
s and the center Z(Dn) is trivial.

(2) Let n > 2 even.
The identity element and the central element rn/2 determine two distinct conjugacy classes.
Let k 6= n/2. The relations srks = srm rk srm = r−k imply that two elements rk and rh

are conjugate if and only if k ≡ ±h (mod n). None of these elements can be conjugate to
an element of the form srl.
From the relations srmrksrm = sr2m−k, for m = 0, . . . , n− 1 and the fact that n is even,
it follows that elements srk and srl are conjugate if and only if k ≡ l mod 2.

In conclusion, when n is even, there are

1 + 1 +
n− 2

2
+ 2 =

n

2
+ 3

conjugacy classes in Dn, namely

1, rn/2, {rk, r−k}, k = 1, . . . ,
n− 2

2
, {srm, m even}, {srm, m odd}.

Let n > 2 odd.
The same arguments as in the even case show that two elements rk and rh are conjugate
if and only if h = ±k (mod n). Moreover, since n is odd, any two elements srk and srl

are conjugate. In conclusion, when n is odd, there are

1 +
n− 1

2
+ 1 =

n+ 3

2

conjugacy classes in Dn, namely

1, {rk, r−k}, k = 1, . . . ,
n− 1

2
, {srm, m = 0, . . . , n− 1}.
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Exercise 2. If n ≥ 3, show that the center of Sn is trivial. For n ≥ 4, show that the
center of An is trivial.

Sol.: Let σ ∈ Sn be non-trivial. Then σ(a) = b for certain a 6= b. Choose c different from
a and b. Then σ(bc) 6= (bc)σ. In fact the permutation on the l.h.s. sends a to b, while the
one on the r.h.s. sends a to c.

Now let σ ∈ An be non-trivial. Then σ(a) = b for certain a 6= b. Choose c, d such that
a, b, c, d are all distinct. Then σ(bcd) 6= (bcd)σ. In fact the permutation on the l.h.s. sends
a to b, while the one on the r.h.s. sends a to c.

Exercise 3. Let n ≥ 1.
(a) Let σ ∈ Sn be a product of disjoint cycles ci of length ni. Show that σ has or-

der lcm(ni).
(b) Exhibit an element of order 6 in S5.
(c) Exhibit some n ≥ 1 for which Sn contains an element of order > n2.

Sol.: (a) A cycle of length k has order k. Since disjoint cycles commute, a product of
disjoint cycles of length ni has order lcm(ni)
(b) The element (123)(45) has order 6 in S5 (and in Sn, for n ≥ 5).
(c) For example, we can exhibit integers p, q, r ≥ 1 with gcd(p, q, r) = 1, so that with
n = p+ q + r we have lcm(p, q, r) = pqr > n2 = (p+ q + r)2.

Exercise 4. Let n ≥ 1 and let σ ∈ An. Let C denote the conjugacy class of σ in Sn. So
we have C = {τστ−1 : τ ∈ Sn}.
(a) Show that C ⊂ An.
(b) Show that either C is a conjugacy class of An or it is a union of two conjugacy classes.
(c) Show that C is a conjugacy class of An if and only if there is an odd permutation in
the Sn-centralizer of σ.

Sol.: (a) We have that sign(τστ−1) = sign(τ)sign(σ)sign(τ) = sign(σ). Hence C ⊂ An.
(b) One has Sn/An ∼= Z2. So Sn = An ∪Anτ0, with τ0 ∈ Sn \An, and the conjugacy class
of σ in Sn is given by

C = {τστ−1 : τ ∈ Sn} = {τστ−1 : τ ∈ An} ∪ {ττ0στ−10 τ−1 : τ ∈ An}.

(c) C is a conjugacy class of An if and only if τ0στ
−1
0 is conjugate to σ in An if and only

if there exists γ ∈ An such that

τ0στ
−1
0 = γσγ−1 ⇔ τ0 = γζ, for some ζ ∈ ZSn

(σ),

⇔ γ = τ0ζ
−1.

Since τ0 is odd, so has to be ζ.

Exercise 5. Let n ≥ 1. Show that Z/nZ admits n distinct 1-dimensional representations.
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Sol.: Let C denote a cyclic group of order n and let w ∈ C be a generator. Let ζ ∈ C∗ be
a primitive nth root of 1. For k ∈ Z the maps φk:C → C∗, determined by φk(w) = ζk, are
homomorphisms and define 1-dimensional representations of Cn. These representations
are mutually non-isomorphic because the corresponding characters χk are distinct: indeed
χk = φk, for all k ∈ Z and φk = φk′ if and only if k ≡ k′ (mod n).

Exercise 6. Let H = {(1), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} in A4.
(a) Write down the multiplication table of the elements in H and deduce that H is a

normal subgroup of A4 that is isomorphic to Klein’s 4-group.
(b) Show that H is the commutator subgroup of A4.
(c) Show that A4 admits three distinct 1-dimensional representations.

Sol.: All non-trivial elements of H have order two. Moreover

(1 2)(3 4) · (1 3)(2 4) = (1 4)(2 3), (1 2)(3 4) · (1 4)(2 3) = (1 3)(2 4),

(1 3)(2 4) · (1 4)(2 3) = (1 2)(3 4), (1 3)(2 4) · (1 2)(3 4) = (1 4)(2 3),

(1 4)(2 3) · (1 2)(3 4) = (1 3)(2 4), (1 4)(2 3) · (1 3)(2 4) = (1 2)(3 4).

Hence H is a group isomorphic to Klein’s 4-group V4. It is clearly normal in A4, because
conjugation preserves the cycle type.

(b) The quotient group A4/H is a group with 3 elements: hence it is abelian and isomorphic
to Z3. This implies the inclusion [A4, A4] ⊂ H. On the other hand, [A4, A4] 6= 1, because
A4 is not abelian. In addition, [A4, A4] cannot one of the order 2 subgroups of H, because
A4 has trivial center and hence no normal subgroups of order 2 (a normal subgroup of
order 2 is necessarily central). In conclusion, [A4, A4] = H.

Exercise 7. Show that every finite group G has a faithful representation, i.e., there is a
representation (π, V ) such that the homomorphism π:G → GL(V ) is injective. (One can
rephrase this as “every finite group is a subgroup of GL(n,C) for some n”.)

Sol.: Consider the regular representation G→ GL(C[G])

g · (
∑
γ∈G

zγγ) =
∑
γ∈G

zγgγ.

This representaion is faithful, i.e. there is no element g ∈ G which fixes all elements
in C[G]. Indeed, if that were the case, then there would exists γ ∈ G such that gγ = γ.
This can be true if and only if g = id.

Exercise 8. Let A : C2 −→ C2 be the map given by A(x, y) = (y, x).
(a) Show that A2 = id and let G denote the group {I, A}.
(b) Write this representation r : G −→ GL2(C) as a product of two 1-dimensional repre-
sentations.

Sol.: (a) One has A(A(x, y)) = A(y, x) = (x, y), for all (x, y) ∈ C2.
(b) Every vector Z ∈ C2 can be written as Z = 1

2 (Z+AZ)+ 1
2 (Z−AZ). So C2 = V1⊕V−1,

where V±1 are the ±1 eigenspaces of A in C2. Both are 1-dimensional.
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