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In this note we determine the automorphism groups of the symmetric groups Sn. For n = 2
this is very easy: we have S2

⇠= Z2 and hence Aut(S2) is trivial. Therefore we suppose
from now on that n > 2. The main result is Theorem 8.

For the convenience of the reader we first recall some basic properties of the groups
Sn and the subgroups An of even permutations.

Lemma 1. Let n > 2.
(a) The center of Sn is trivial;
(b) For n > 3 the center of An is trivial.

Proof. (a) Let � 2 Z(Sn). If � 6= id, then there exist two distinct a, b 2 {1, 2, . . . , n} with
�(a) = b. Choose c 2 {1, 2, . . . , n} with c 6= a and c 6= b. Then (b c)� 6= �(b c) because
(b c)� maps a to c, while �(b c) maps a to b. This shows that � = id and Z(Sn) must be
trivial, as required.
(b) Similarly, suppose that � 2 Z(An) is non-trivial. Pick two distinct a, b 2 {1, 2, . . . , n}
with �(a) = b and choose two elements c, d 2 {1, 2, . . . , n} di↵erent from a and b. Then
(b c d)� 6= �(b c d) because the two permutations map a to di↵erent elements.

Lemma 2. Two elements of Sn are conjugate if and only if they have the same cycle type.

Proof. For any � 2 Sn and any d  n we have

�(1 2 . . . d)��1 = (�(1)�(2) . . . �(d)).

This shows that any conjugate of a d-cycle is again a d-cycle. Since every permutation
is a product of disjoint cycles, it follows that the cycle types of conjugate permutations
are the same. In the other direction, let ⌧ = (a1 . . . ar)(ar+1 . . . as) . . . (al . . . am) and
⌧
0 = (a01 . . . a

0
r)(a
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0
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0
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0
m) be two permutations having the same cycle type.

Define � 2 Sn by �(ai) = a
0
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0
.

This shows that ⌧ and ⌧
0 are conjugate, as required.

Lemma 3. Let n > 2.
(a) The group An is generated by 3-cycles.
(b) Any normal subgroup of An that contains a 3-cycle, is equal to An itself.

Proof. (a) The product (1 2)(2 3) is equal to the 3-cycle (1 2 3). The product of two
disjoint 2-cycles (a b) and (c d) is equal to (a b)(b c)(b c)(c d) and is hence a product of two
3-cycles. Since any element of An is a product of an even number of transpositions, it is
therefore a product of 3-cycles.
(b) Let N ⇢ An be a normal subgroup and suppose that (1 2 3) 2 N . Let �0 2 An be an
arbitrary 3-cycle. Then �

0 = ⌧(1 2 3)⌧�1 for some ⌧ 2 Sn. If ⌧ 2 An, then �
0 2 N and we

are done. If not, then ⌧
0 = ⌧(1 2) is in An and �

0 = ⌧
0(1 3 2)⌧ 0�1 is once again in N .
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Lemma 4. The commutator subgroup of Sn is equal to An. For n � 5 the commutator
subgroup of An is equal to An itself.

Proof. Since Sn/An is commutative, the commutator subgroup S
0
n is contained in An.

Conversely, we have (1 2)(1 3)(1 2)�1(1 3)�1 = (1 2 3), showing that every 3-cycle is in S
0
n.

By Lemma 3 (a) the group An is generated by 3-cycles, so that S0
n = An as required.

The identity
(1 2 3)(3 4 5)(1 2 3)�1(3 4 5)�1 = (1 4 3).

shows that for n � 5 every 3-cycle is a commutator of An. This implies the second
statement.

We remark that the group A3 is abelian, so that its commutator subgroup is trivial.
The group A4 is not abelian. Its commutator subgroup is

V4 = {(1), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}.
Indeed, V4 is normal and the quotient A4/V4 has order 3 and is hence abelian. It follows
that A0

4 ⇢ V4. Equality follows from the identity (1 2 3)(1 2 4)(1 2 3)�1(1 2 4)�1 = (1 2)(3 4).

Proposition 5. Let n � 5. Then the group An is simple, i.e. does not contain any proper
normal subgroups. The only proper normal subgroup of Sn is An.

Proof. Let N ⇢ An be a non-trivial normal subgroup. We will show that N contains a
3-cycle. Then Lemma 3 (b) implies the required result.

Step 1. Suppose that N contains a permutation � which is a product of disjoint cycles at
least one of which has length d � 4. Then, up to renumbering, we have � = (1 2 . . . d)⌧
where ⌧ leaves {1, 2, . . . , d} invariant. The permutation �

�1(1 2 3)�(1 2 3)�1 is contained
in N . One easily checks that it is equal to the 3-cycle (1 3 d).

Step 2. This leaves us with the possibility that all permutations in N are products of
disjoint cycles of length  3. Suppose that N contains a permutation � admitting a
3-cycle. If it admits only one 3-cycle, then its square is a 3-cycle and we are done. If
it contains at least two 3-cycles, we may assume that � = (1 2 3)(4 5 6)⌧ where ⌧ leaves
{1, 2, . . . , 6} invariant. Then �

�1(1 2 4)�(1 2 4)�1 is contained in N . One easily checks that
it is equal to (1 4 2 3 6) and we are done by Step 1.

Step 3. This leaves us with the possibility that all permutations in N are products of
disjoint transpositions. Let � 2 N be a non-trivial element. Since � is even, it is a
product of at least two transpositions and we may assume that � = (1 2)(3 4)⌧ , where ⌧

leaves {1, 2, 3, 4} invariant. Then �(1 2 3)�(1 2 3)�1 = (1 3)(2 4) is in N . Since n � 5 the
permutation (1 3)(2 4)(1 3 5)(1 3)(2 4)(1 3 5)�1 is in N . It is equal to the 3-cycle (1 3 5) and
we are done.

To prove the second statement of the Proposition, let N be a proper normal subgroup
of Sn. Then N \An is a normal subgroup of An. So either N ⇢ An in which case N = {1}
or N = An or we have N \ An = {1}. In the latter case #N  2 and hence N ⇢ Z(Sn).
Lemma 1 implies then that N = {1}. This proves the proposition.

We remark that the possibility that arises in Step 3 of the proof of Lemma 5, actually
occurs for n = 4. In that case the group V4 mentioned above is a normal subgroup of A4.
Its elements are products of disjoint transpositions.
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