Algebra 2. The symmetric groups S_n .

In this note we determine the automorphism groups of the symmetric groups S_n . For n = 2 this is very easy: we have $S_2 \cong \mathbb{Z}_2$ and hence $\operatorname{Aut}(S_2)$ is trivial. Therefore we suppose from now on that n > 2. The main result is Theorem 8.

For the convenience of the reader we first recall some basic properties of the groups S_n and the subgroups A_n of *even* permutations.

Lemma 1. Let n > 2.

(a) The center of S_n is trivial;

(b) For n > 3 the center of A_n is trivial.

Proof. (a) Let $\sigma \in Z(S_n)$. If $\sigma \neq id$, then there exist two distinct $a, b \in \{1, 2, ..., n\}$ with $\sigma(a) = b$. Choose $c \in \{1, 2, ..., n\}$ with $c \neq a$ and $c \neq b$. Then $(bc)\sigma \neq \sigma(bc)$ because $(bc)\sigma$ maps a to c, while $\sigma(bc)$ maps a to b. This shows that $\sigma = id$ and $Z(S_n)$ must be trivial, as required.

(b) Similarly, suppose that $\sigma \in Z(A_n)$ is non-trivial. Pick two distinct $a, b \in \{1, 2, ..., n\}$ with $\sigma(a) = b$ and choose two elements $c, d \in \{1, 2, ..., n\}$ different from a and b. Then $(b c d)\sigma \neq \sigma(b c d)$ because the two permutations map a to different elements.

Lemma 2. Two elements of S_n are conjugate if and only if they have the same cycle type.

Proof. For any $\sigma \in S_n$ and any $d \leq n$ we have

$$\sigma(12\ldots d)\sigma^{-1} = (\sigma(1)\sigma(2)\ldots\sigma(d)).$$

This shows that any conjugate of a *d*-cycle is again a *d*-cycle. Since every permutation is a product of disjoint cycles, it follows that the cycle types of conjugate permutations are the same. In the other direction, let $\tau = (a_1 \dots a_r)(a_{r+1} \dots a_s) \dots (a_l \dots a_m)$ and $\tau' = (a'_1 \dots a'_r)(a'_{r+1} \dots a'_s) \dots (a'_l \dots a'_m)$ be two permutations having the same cycle type. Define $\sigma \in S_n$ by $\sigma(a_i) = a'_i$ for $i = 1, 2, \dots, m$. Then

$$\sigma\tau\sigma^{-1} = \sigma(a_1\dots a_r)\sigma^{-1}\sigma(a_{r+1}\dots a_s)\sigma^{-1}\dots\sigma(a_l\dots a_m)\sigma^{-1},$$

= $(a'_1\dots a'_r)(a'_{r+1}\dots a'_s)\dots(a'_l\dots a'_m),$
= $\tau'.$

This shows that τ and τ' are conjugate, as required.

Lemma 3. Let n > 2.

(a) The group A_n is generated by 3-cycles.

(b) Any normal subgroup of A_n that contains a 3-cycle, is equal to A_n itself.

Proof. (a) The product (12)(23) is equal to the 3-cycle (123). The product of two disjoint 2-cycles (ab) and (cd) is equal to (ab)(bc)(bc)(cd) and is hence a product of two 3-cycles. Since any element of A_n is a product of an *even* number of transpositions, it is therefore a product of 3-cycles.

(b) Let $N \subset A_n$ be a normal subgroup and suppose that $(123) \in N$. Let $\sigma' \in A_n$ be an arbitrary 3-cycle. Then $\sigma' = \tau(123)\tau^{-1}$ for some $\tau \in S_n$. If $\tau \in A_n$, then $\sigma' \in N$ and we are done. If not, then $\tau' = \tau(12)$ is in A_n and $\sigma' = \tau'(132)\tau'^{-1}$ is once again in N.

Lemma 4. The commutator subgroup of S_n is equal to A_n . For $n \ge 5$ the commutator subgroup of A_n is equal to A_n itself.

Proof. Since S_n/A_n is commutative, the commutator subgroup S'_n is contained in A_n . Conversely, we have $(12)(13)(12)^{-1}(13)^{-1} = (123)$, showing that every 3-cycle is in S'_n . By Lemma 3 (a) the group A_n is generated by 3-cycles, so that $S'_n = A_n$ as required.

The identity

 $(123)(345)(123)^{-1}(345)^{-1} = (143).$

shows that for $n \ge 5$ every 3-cycle is a commutator of A_n . This implies the second statement.

We remark that the group A_3 is abelian, so that its commutator subgroup is trivial. The group A_4 is not abelian. Its commutator subgroup is

 $V_4 = \{(1), (12)(34), (13)(24), (14)(23)\}.$

Indeed, V_4 is normal and the quotient A_4/V_4 has order 3 and is hence abelian. It follows that $A'_4 \subset V_4$. Equality follows from the identity $(123)(124)(123)^{-1}(124)^{-1} = (12)(34)$.

Proposition 5. Let $n \ge 5$. Then the group A_n is simple, i.e. does not contain any proper normal subgroups. The only proper normal subgroup of S_n is A_n .

Proof. Let $N \subset A_n$ be a non-trivial normal subgroup. We will show that N contains a 3-cycle. Then Lemma 3 (b) implies the required result.

Step 1. Suppose that N contains a permutation σ which is a product of disjoint cycles at least one of which has length $d \ge 4$. Then, up to renumbering, we have $\sigma = (12 \dots d)\tau$ where τ leaves $\{1, 2, \dots, d\}$ invariant. The permutation $\sigma^{-1}(123)\sigma(123)^{-1}$ is contained in N. One easily checks that it is equal to the 3-cycle (13d).

Step 2. This leaves us with the possibility that all permutations in N are products of disjoint cycles of length ≤ 3 . Suppose that N contains a permutation σ admitting a 3-cycle. If it admits only one 3-cycle, then its square is a 3-cycle and we are done. If it contains at least two 3-cycles, we may assume that $\sigma = (123)(456)\tau$ where τ leaves $\{1, 2, \ldots, 6\}$ invariant. Then $\sigma^{-1}(124)\sigma(124)^{-1}$ is contained in N. One easily checks that it is equal to (14236) and we are done by Step 1.

Step 3. This leaves us with the possibility that all permutations in N are products of disjoint transpositions. Let $\sigma \in N$ be a non-trivial element. Since σ is even, it is a product of at least two transpositions and we may assume that $\sigma = (12)(34)\tau$, where τ leaves $\{1, 2, 3, 4\}$ invariant. Then $\sigma(123)\sigma(123)^{-1} = (13)(24)$ is in N. Since $n \geq 5$ the permutation $(13)(24)(135)(13)(24)(135)^{-1}$ is in N. It is equal to the 3-cycle (135) and we are done.

To prove the second statement of the Proposition, let N be a proper normal subgroup of S_n . Then $N \cap A_n$ is a normal subgroup of A_n . So either $N \subset A_n$ in which case $N = \{1\}$ or $N = A_n$ or we have $N \cap A_n = \{1\}$. In the latter case $\#N \leq 2$ and hence $N \subset Z(S_n)$. Lemma 1 implies then that $N = \{1\}$. This proves the proposition.

We remark that the possibility that arises in Step 3 of the proof of Lemma 5, actually occurs for n = 4. In that case the group V_4 mentioned above is a normal subgroup of A_4 . Its elements are products of disjoint transpositions.