Exercise 1. (1) Determine the center of D_n . (2) Determine the conjugacy classes of D_n . (It might help a little to know that, if n is even, then there are n/2 + 3 conjugacy classes, and if n is odd then there are (n-1)/2 + 2. conjugacy classes.)

Exercise 2. If $n \ge 3$, show that the center of S_n is trivial. For $n \ge 4$, show that the center of A_n is trivial.

Exercise 3. Let $n \ge 1$.

- (a) Let $\sigma \in S_n$ be a product of disjoint cycles c_i of length n_i . Show that σ has order lcm (n_i) .
- (b) Exhibit an element of order 6 in S_5 .
- (c) Exhibit some $n \ge 1$ for which S_n contains an element of order $> n^2$.

Exercise 4. Let $n \ge 1$ and let $\sigma \in A_n$. Let C denote the conjugacy class of σ in S_n . So we have $C = \{\tau \sigma \tau^{-1} : \tau \in S_n\}$.

- (a) Show that $C \subset A_n$.
- (b) Show that either C is a conjugacy class of A_n or it is a union of two conjugacy classes.
- (c) Show that C is a conjugacy class of A_n if and only if there is an *odd* permutation in the S_n -centralizer of σ .

Exercise 5. Let $n \ge 1$. Show that $\mathbf{Z}/n\mathbf{Z}$ admits *n* distinct 1-dimensional representations.

Exercise 6. Let $H = \{(1), (12)(34), (13)(24), (14)(23)\}$ in A_4 .

- (a) Write down the multiplication table of the elements in H and deduce that H is a normal subgroup of A_4 that is isomorphic to Klein's 4-group.
- (b) Show that H is the commutator subgroup of A_4 .
- (c) Show that A_4 admits three distinct 1-dimensional representations.

Exercise 7. Show that every finite group G has a faithful representation, i.e., there is a representation (π, V) such that the homomorphism $\pi: G \to GL(V)$ is injective. (One can rephrase this as "every finite group is a subgroup of $GL(n, \mathbb{C})$ for some n".)

Exercise 8. Let $A: \mathbb{C}^2 \longrightarrow \mathbb{C}^2$ be the map given by A(x,y) = (y,x).

- (a) Show that $A^2 = id$ and let G denote the group $\{I, A\}$.
- (b) Write this representation $r: G \longrightarrow \operatorname{GL}_2(\mathbf{C})$ as a product of two 1-dimensional representations.