LECTURE 3: CODE CONSTRUCTIONS AND BOUNDS ON CODES

ELISA LORENZO GARCÍA

CONTENTS

1. Code Constructions	1
1.1. Puncturing (or restricted to $\{1,, n\}/P$)	1
1.2. Extended code	1
1.3. Shortened code	1
1.4. Augmentation code	2
1.5. Direct Sum	2
1.6. Juxtaposition	2
1.7. Plotkin or $(u \mid u + v)$	2
1.8. The product code	2
1.9. Binary Reed-Muller $RM_2(r,m)$ with $0 \le r \le m$.	2
2. Bounds	2
2.1. Singleton bound	2
2.2. Griesmer Bound	2
2.3. Plotkin	3
2.4. Hamming bound	3
2.5. Gilbert bound	3
2.6. Varshamov bound	3
3. Exercises	4

1. Code Constructions

1.1. Puncturing (or restricted to $\{1, ..., n\}/P$). deleting one or more fixed coordinates $P \subseteq \{1, ..., n\}$.

 C_P is an $[n-p, k_p, d_p]$ -code with $d-p \leq d_P \leq d$ and $k-p \leq k_p \leq k$. If p < d then $k_p = k$.

Example 1.1. $G = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}$ is a [4,3,1]-code over \mathbb{F}_2 . We take $P = \{4\}$, then $G = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$ is a [3,2,1]-code.

1.2. Extended code. Let us start with C an [n, k, d]-code and $v \in \mathbb{F}_q^n$. Then $C^e(v) \subseteq \mathbb{F}_q^{n+1}$ where $c_{n+1} = -\sum v_i c_i$. We get an $[n+1, k, d_e]$ -code with $d \leq d_e \leq d+1$.

1.3. Shortened code. C, [n, k, d], $S \subseteq \{1, ..., n\}$. $C(S) = \{c \in C | c_i = 0 \forall i \in S\}$ and we define by puncturing $C^S = (C(S))_S$. Parameters $[n - s, k_S, d_S]$ with $k - s \leq k_S \leq k$ and $d \leq d_s$.

1.4. Augmentation code. C, [n, k, d] and $v \in \mathbb{F}_q^n$.

 $C^{a}(v) := \{ \alpha v + c \mid \alpha \in \mathbb{F}_{q}, c \in C \}$

If $v \notin C$ and w = w(v), then $\min\{d - w, w\} \leq d(C^a(v)) \leq \min\{d, w\}$. In particular $d(C^a(v)) = w$ if $w \leq d/2$

Proposition 1.2. If we have a code with parameters [n, k, d] with $k \ge 2$ and $n > d \ge 2$ then there exist codes with [n + 1, k, d], [n - 1, k - 1, d], [n - 1, k, d - 1], [n, k - 1, d] and [n, k, d - 1].

1.5. Direct Sum. $C_1 \oplus C_2$ with $[n_1 + n_2, k_1 + k_2, d]$ with $d = min\{d_1, d_2\}$.

1.6. Juxtaposition. $G = (G_1 | G_2)$ with the same k and $[n_1 + n_2, k, d \ge d_1 + d_2]$.

1.7. Plotkin or $(u \mid u+v)$. $\{(u \mid u+v) \mid u \in C_1, v \in C_2\}$ with same n and $[2n, k_1+k_2, d = min\{2d_1, d_2\}]$.

1.8. The product code. $C_1 \otimes C_2$ with $[n_1n_2, k_1k_2, d_1d_2]$

1.9. Binary Reed-Muller $RM_2(r,m)$ with $0 \le r \le m$. $RM_2(0,m)$ is the repetition code of length 2^m and parameters $[2^m, 1, 2^m]$.

 $RM_2(m,m) = \mathbb{F}_2^m$ with [m,m,1].

 $RM_2(r+1, m+1)$ is the $(u \mid u+v)$ construction with $RM_2(r+1, m)$ and $RM_2(r, m)$. $RM_2(r, m)$ has $n = 2^m$, $k = \sum_{i=0}^r \binom{m}{i}$ and $d = 2^{m-r}$ and the dual is $RM_2(m-r-1, m)$.

2. Bounds

See the websites: http://www.codetables.de/ and http://codes.se/bounds/.

The smallest case we don't know: binary linear code with n = 32, k = 14, we have one with d = 8, is there anyone with d = 9? this would be the maximun.

2.1. Singleton bound.

$$d \le n - k + 1$$

Proof. $rk H \leq n - k$ and $rk H \geq d - 1$.

s = n + 1 - k - d is called the Singleton defect or the genus of the code. If s = 0, then C is called a maximum distance separable code (MDS). Or almost MDS if genus= 1.

Definition 2.1. Let q be a fixed power of a prime. $C = \{C_i\}_{i=1}^{\infty}$ a sequence of \mathbb{F}_q -linear codes with parameters $[n_i, k_i, d_i]$ is called asymptotic, if $\lim_{i\to\infty} n_i = \infty$ and $R(\mathcal{C}) = \lim_{i\to\infty} \frac{k_i}{n_i}$ and $\delta(\mathcal{C}) = \lim_{i\to\infty} \frac{d_i}{n_i}$ exist. It's good if both are positive.

Asymptotic bound: $R(\mathcal{C}) + \delta(\mathcal{C}) \leq 1$

2.2. Griesmer Bound.

Proof. See exercise 3.3.

2.3. Plotkin. C is an [n, M, d] code over \mathbb{F}_q such that qd > (q-1)n. Then $M \leq \lfloor \frac{qd}{qd-(q-1)n} \rfloor$.

Equality holds iff C is equidistant code of minimum distance d with M(q-1)dn = (M-1)q.

Proof. We count in two different ways:

$$M(M-1)d \le S = \sum_{x \in C} \sum_{y \in C} d(x,y) \le n \frac{q-1}{q} M^2.$$

Last inequality a bit more difficult.

Asymptotic If $\delta(\mathcal{C}) \leq \frac{q-1}{q}$ then $R(\mathcal{C}) + \frac{q}{q-1}\delta(\mathcal{C}) \leq 1$.

2.4. Hamming bound. $A_q(n,d) = max \# C/\mathbb{F}_q$ with fixed n and d. $B_q(n,d)$ same thing but linear. Then

$$B_q(n,d) \le A_q(n,d) \le \frac{q^n}{V_q(n,t)}$$

with $t = \lfloor \frac{d-1}{2} \rfloor$ and $V_q(n,t) = \#B_t(x) = \sum_{i=0}^t \binom{n}{i}(q-1)^i$. Asymptotic bound: $R(\mathcal{C}) \leq 1 - H_q(\delta(\mathcal{C})/2)$ with $H_q(x) = \log_q \frac{(q-1)^x}{x^x(1-x)^{1-x}}$.

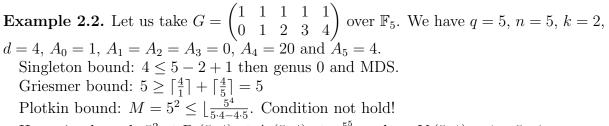
2.5. Gilbert bound. $a_q(n,d) = log_q A_q(n,d) \ge n - log_q V_q(n,d-1)$

Proof. Again, looking at the balls the result follows.

2.6. Varshamov bound. $b_q(n,d) = \log_q B_q(n,d) \ge n - \lceil \log_q V_q(n,d-1) \rceil$

Proof. Again, looking at the balls the result follows.

Asymptotic: There exists a good C such that $R(C) = 1 - H_q(\delta(C))$.



Hamming bound: $5^2 \le B_5(5,4) \le A_5(5,4) \le \frac{5^5}{V_5(5,1)}$ where $V_5(5,1) = 1 + 5 \cdot 4$. Gilbert bound: $2 \le a_5(5,4) \ge 5 - \log_5 V_5(5,3) = 5 - \log_5(1 + 5 \cdot 4 + 10 \cdot 4^2 + 10 \cdot 4^3) = 1, \dots$

1.0 0.8 0.6 0.4 0.2 0.2 0.2 0.4 0.6 0.5 1.0 6

3. Exercises

Exercise 3.1. Compute the parameters of the following codes:

- (1) Puncturing (or restricted to $\{1, ..., n\}/P$) deleting one or more fixed coordinates $P \subseteq \{1, ..., n\}$. C_P is an $[n-p, k_p, d_p]$ -code with $d-p \leq d_P \leq d$ and $k-p \leq k_p \leq k$. If p < d then $k_p = k$.
- (2) Extended code Let C be an [n, k, d]-code and $v \in \mathbb{F}_q^n$. Then $C^e(v) \subseteq \mathbb{F}_q^{n+1}$ where $c_{n+1} = -\sum v_i c_i$. We get an $[n+1, k, d_e]$ -code with $d \leq d_e \leq d+1$.
- (3) Direct Sum $C_1 \oplus C_2$ with $[n_1 + n_2, k_1 + k_2, d]$ and $d = min\{d_1, d_2\}$.
- (4) Juxtaposition $G = (G_1 | G_2)$ with the same k and $[n_1 + n_2, k, d \ge d_1 + d_2]$. ex:vandermonde

Exercise 3.2. Let $n \leq q$. Let $a = (a_1, .., a_n)$ be an *n*-tuple of mutually distinct elements of \mathbb{F}_q . Let k be an integer $0 \leq k \leq n$. Define

$$G_k(a) = \begin{pmatrix} 1 & \dots & 1 \\ a_1 & \dots & a_n \\ \dots & \dots & \dots \\ a_1^{k-1} & \dots & a_n^{k-1} \end{pmatrix}.$$

The code with generator matrix $G_k(a)$ is a MDS code.

ex:Griesmer

Exercise 3.3. Prove the Griesmer bound by induction on k and by considering the puntured code C_P with $P = \operatorname{supp}(c)$ for a $c \in C$ with w(c) = d.

ELISA LORENZO GARCÍA, UNIV RENNES, CNRS, IRMAR - UMR 6625, F-35000 RENNES, FRANCE.

Email address: elisa.lorenzogarcia@univ-rennes1.fr