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1. Error Correcting Codes

I don’t know how much you know about error correcting codes, but the idea is that we
send extra information through a channel in such a way that even if some information is
lost or changed we can still recover the message. This is what we call redundancy.

Recovering information from a partial message is for example what we do when we
notice and correct misspelling. Or what people do reading Hebrew: only the consonants
are written and the vowels are left out.

The science of deleting redundant information to store it in less memory is called data
compression. The idea in error-correcting codes is the converse. One adds redundant
information in such a way that it is possible to detect or even correct errors after trans-
mission.

Example 1.1. radio contacts between pilots: A of Alpha, B of Bravo, C of Charlie, D
of ...

Example 1.2. Parity check symbol. Spanish DNI: 05306738V (remainder by 23 and
read a table).

Legend says that Hamming was so frustrated the computer halted every time it detected
a error after he handed in a stack of punch cards, he thought about a way the computer
would be able not only to detect the error but also to correct it automatically. Hamming
theory is about the actual construction, the encoding and decoding of codes and uses
tools from combinatorics, algebra and geometry. Shannon leads to information theory:
probability sense.

Let’s formalize a little bit more those ideas:
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Example 1.3. Repetition Code. Hi! → HHii!! if HHii!? at least one error, but you
cannot correct.
Hi!→ HHHiii!!! if HHHiii!!?, one error and I can correct it. But not two.
The information rate is 1/2 and 1/3 respectively.

Example 1.4. Parity check. The message (m1,m2,m3,m4) ∈ F4
2. Redundancy: r1 =

m1 +m2, r2 = m3 +m4, r3 = m1 +m3, r4 = m2 +m4, r5 = m1 +m2 +m3 +m4.

m1 m2 r1
m3 m4 r2
r3 r4 r5

The information rate is 4/9 > 1/3, also corrects one error and up to 3 erased bits.

Example 1.5. Hamming: message (m1,m2,m3,m4) ∈ F4
2. r1 = m2 + m3 + m4, r2 =

m1 + m3 + m4 and r3 = m1 + m2 + m4. The information rate is 4/7 and one error may
be corrected. Decoding: If the 3 equalities are true no error, if only false the first one,
then r1 is wrong; if the first and the second, then m3; etc.

THE MAGIC TRICK

Definition 1.6. Let Q be a set of q symbols called the alphabet. Let Qn be teh set of
all n-tuples x = (x1, ..., xn) with entries xi ∈ Q. A block code C of length n over Q is
a nonempty subset of Qn. The elements of C are called codewords. If C contains M
codewords, then M is the size of the code. If M = qk, then C is called an [n, k] code.
n− logqM is called the redundancy. The information rate is R = logqM/n.

Example 1.7. For the Hamming code, see example 1.5: Q = F2, q = 2, n = 7. #C = 24

so k = 4 and we have a [7, 4]-code. The redundancy is n − k = 3 and the information
rate is R = k/n = 4/7.

Definition 1.8. For x = (x1, ..., xn), y = (y1, ..., yn) ∈ Qn, the Hamming distance d(x, y)
is defined as |{i|xi 6= yi}|.

Proposition 1.9. (1) d(x, x) ≥ 0 and equality holds iff x = y.
(2) d(x, y) = d(y, x) symmetry
(3) d(x, z) ≤ d(x, y) + d(y, z) triangle inequality

Proof. for iii) if xi 6= zi then xi 6= yi or yi 6= zi. �

Definition 1.10. The minimum distance of a code {0} 6= C ⊆ Qn is defined as d =
d(C) = min{d(x, y)|x, y ∈ C, x 6= y}.

Definition 1.11. A linear code C is a linear subspace of Fn
q . We denote it by [n, k]q or

[n, k, d]q where n, k, d are its parameters.

Definition 1.12. For a word x ∈ Fn
q : supp(x) = {i|x1 6= 0}, w(x) = #supp(x) and

W (C) = min{w(c)|c ∈ C, c 6= 0} for C 6= {0}.
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Proposition 1.13. For a linear code d = w.

Proof. d(x, y) = d(x− x, y − x) = d(0, y − x) = w(y − x) �

Definition 1.14. Ball of radius r around x: Br(x) = {y ∈ Qn|d(x, y) ≤ r}. The sphere:
Sr(x) = {y ∈ Qn|d(x, y) = r}.
Example 1.15. (Hamming, see 1.5)

m1 m2 m3 m4 r1 r2 r3
0 0 0 0 0 0 0
0 0 0 1 1 1 1
0 0 1 0 1 1 0
0 0 1 1 0 0 1
0 1 0 0 1 0 1
0 1 0 1 0 1 0
0 1 1 0 0 1 1
0 1 1 1 1 0 0
1 0 0 0 0 1 1
1 0 0 1 1 0 0
1 0 1 0 1 0 1
1 0 1 1 0 1 0
1 1 0 0 1 1 0
1 1 0 1 0 0 1
1 1 1 0 0 0 0
1 1 1 1 1 1 1

W (C) = 3 then d = 3 then [7, 4, 3]2-linear code. C ∩ B2(x) = {x}. There are 1 word of
weight 0, 7 of weight 3, 7 of weight 4 and 1 of weight 8.

The weight enumerator polynomial

WC(x, y) =
n∑

w=0

Awx
n−wyw = x7 + 7x4y3 + 7x3y4 + y7

(Aw is equal to the number of words of weight w).
Mac Willians identity WC⊥(x, y) = q−kWC(x+ (q − 1)y, x− y), see [, Section 3.1.3].

A code with minimal distance d can detect and correct up to bd−1
2
c.

The main problem of error correcting codes from Hamming’s point of view is to con-
struct for given length and k a code with the largest possible minimal distance (+ efficient
encoding and decoding).

POINTS DRAWING

Theorem 1.16. (Berlekamp, McEliece, Van Tilborg, 1978) The following problem is
NP-complete: let C ⊆ Fn

q , y ∈ Fn
q and t ∈ {0, 1, .., n}. Decide if there exists a c ∈ C such

that d(y, c) ≤ t.

Difficult problems are good for crypto!!

2. More on linear codes

Let C be a [n, k] linear code over Fq. Let {g1, ..., gk} be a basis of C. gi = (gi1, ..., gin).
Denote

G =

g1...
gn

 =

g11 ... g1n
... ... ...
gk1 ... gkn


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We call it a (it is not unique) generator matrix. Every c ∈ C can be uniquely written
as m1g1 + ... + mkgk where mi ∈ Fq. Then c = mG with m = (m1, ...,mk). We have a
encoding: E : C ' Fk

q → Fn
q .

Example 2.1. The linear code with parameters [n, 0] and [n, n] are the trivial codes {0}
and Fn

q , they have the empty matrix and the n×n identity matrix as generator matrices.

Example 2.2. For the Hamming code in example 1.5, we need 4 linearly independent
vectors:

G =


1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1


Remark 2.3. The generator matrix is not unique, but the reduced row echelon form it
is:

(1) all rows with only 0’s are at the bottom
(2) in every row, the first element not equal to 0 is a 1, the pivot.
(3) below and above a pivot there are only 0’s
(4) the pivots form an staircase

We use Gauss elimination to compute it!

3. Parity check and dual code

There are two standard ways to describe a subspace of a linear space: explicitly (basis)
or implicitly (equations).

Let C be a Fq-linear [n, k] code. Let H be an m × n matrix with entries in Fq and
such that C is the null space of H. So C is the set of all c ∈ Fq such that Hct = 0. The
m equations of H are called parity check equations. We have k ≥ n − m. If we have
k = n−m, H has rank n− k and it’s called a parity check matrix.

Remark 3.1. G is made up of a basis of the kernel of H. So HGt = 0 = GH t. From th
reduced form of G is easy to compute H.

Example 3.2. Over F3, if G =

(
1 0 1 2
0 1 2 1

)
then H =

(
2 1 1 0
1 2 0 1

)
(on the left we

write a n− k × n− k invertible matrix and on the right a n− k × k matrix that makes
H satisfies GH t = 0).

Theorem 3.3. d is the smallest integer such that d columns of H are l.d. (or equivalently,
the greatest d such that all d− 1 columns are l.i.).

Proof. H = (h1, .., hk), c ∈ C, w = w(c). supp(c) = {j1, .., jw} with 1 ≤ j1 ≤ ... ≤ jw ≤ n.
Hct = 0, then cj1h1 + ...+ cjwhjw = 0 with cji 6= 0, then hji are l.d.

Conversely, if hj1 , ..., hjw are dependant there exist ai such that
∑
aihji = 0. We take

c = (c1, ..., cn) with cj = 0 if j 6= ji and cj = ai if j = ji, then Hct = 0, c ∈ C and
w(c) = w. �

4. The dual code

Definition 4.1. Hamming code general case: n = qr−1
q−1 and Hr(q) be a r × n matrix

over Fq with non-zero columns and no two l.d. Hr(q) q-ary Hamming code: has Hr(q) as
parity check matrix. Sr(q) q-ary simplex code: has Hr(q) as generator matrix.
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Definition 4.2. C is an [n, k]-code, the dual code is defined by C⊥ = {x ∈ Fn
q |c · x =

0 ∀c ∈ C}. A generator matrix of C⊥ is a parity check matrix of C.

Proposition 4.3. C⊥ is a [n, n− k]-code, and (C⊥)⊥ = C.

Proof. HGt = GH t = 0. �

For the distance there is not an easy relation.

Example 4.4. {0} and Fn
q are dual codes.

Example 4.5. Hr(q) and Sq(r) are dual codes by definition.

Definition 4.6. C1 and C2 are orthogonal if C1 ⊆ C⊥2 and C2 ⊆ C⊥1 .

5. Golay codes

The extended binary Golay code G24 is a [24, 12, 8]-linear code. The perfect binary
Golay code G23 is a [23, 12, 7]-linear code. They differ by a parity bit. They have auto-
morphism group the (huge) Matthieu groups M24 and M23.

As a cyclic code G23 is generated by x11 + x10 + x6 + x5 + x4 + x2 + 1.
They were used for data transmission in the Voyager 1 and 2 by the NASA to get color

pictures of Jupiter and Saturn (previous Hadamard codes were not enough, only black
and white ones).

There are also a ternary Golay code with parameters [11, 6, 5]3. We also have the
extended one with [12, 6, 6]3. By Golay in 1949 and by football pool enthusiast in 1947,
both independently: 11 games, 729 bets, then one with at most 2 errors.

LA QUINIELA

G =


1 1 1 2 2 0 1 0 0 0 0
1 1 2 1 0 2 0 1 0 0 0
1 2 1 0 1 2 0 0 1 0 0
1 2 0 1 2 1 0 0 0 1 0
1 0 2 2 1 1 0 0 0 0 1


6. Decoding and the error probability

Let C be a linear code in Fn
q of minimum distance d. If c ∈ C is a transmitted codeword

and r is the received word, then e = r − c is error vector, supp(e) = {i|ri 6= ci} is the
error positions and its cardinality is w(e). If w(e) < d/2 then the nearest codeword to r
is unique.
E : Fk

q → Fn
q is an encoder of C and D : Fn

q → Fk
q ∪ {?} (? is a failure) is a decoder if

DE = Id.
Brute force for decoding has a complexity of nqk.

Definition 6.1. s = rH t = eH t is called the syndrome of r with respect to H.

Preprocess a look-up table of pairs (s, e) gives a decoder.

6.1. The Symmetric channel. The q-ary symmetric channel: q-ary words are sent
with independent errors and the q − 1 wrong symbols appear with probability p0

q−1 . So

p0 is the probability of error. Moreover, we ask P (c) ≡ 1
|C| for all c ∈ C and P (r|c) only

depending on d(r, c).
The main problem of error-correcting codes from “Shannon’s point view” is to construct

efficient encoding and decoding algorithms of codes with the smallest error probability
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(i.e. 1−
∑

c∈C P (c)
∑
D(r)=c P (r|c)) for a given information rate and cross-over probability

p0.

Theorem 6.2. (Shannon’s random coding theorem for a q-ary symmetric channel, 1948)
The error probability vanishes for n→∞ for a fixed code rate R < 1.

7. Equivalent codes

Let M ∈ GL(n, q). It defines a bijection of Fn
q . # GL(n, q) = (qn − 1)(qn − q)...(qn −

qn−1). φ : Fn
q → Fn

q is called an isometry if d(φ(x), φ(y)) = d(x, y). The set of isometries
Isom(n, q) is a group (isometries are not necessarily linear maps).

A monomial matrix of size n is an n× n matrix with entries in Fq such that every row
and every column has exactly one non-zero entry.

Proposition 7.1. Let M ∈ GL(n, q). The following are equivalent:

(1) M is an isometry
(2) w(M(x)) = w(x) for all x ∈ Fn

q

(3) M is a monomial matrix

Proof. i) =⇒ ii) and iii) =⇒ i) are clear. For ii) =⇒ iii) take the canonical basis and its
image. �

Corollary 7.2. GL(n, q) ∩ Isom(n, q) = Mono(n, q)

Definition 7.3. C ≡ D are equivalent if there exists φ ∈ Isom(n, q) such that D = φ(C).
C ' D are linearly equivalent if there exists M ∈ Mono(n, q) such that M(C) = D.

Definition 7.4. We talk about the automorphism group and the monomial automor-
phism group.

Proposition 7.5. (1) C ≡ D then C⊥ ≡ D⊥

(2) C ' D then C⊥ ' D⊥

(3) C ≡ D then C ' D
(4) C ' D then same parameters

Example 7.6. Up to linear equivalence there is only one [7, 4, 3]2-code: Let H a parity
check matrix. Then it is a 3×7 matrix. Since the distance is 3, no column is equal to zero,
no two columns are l.d., but there are 3 that they are. Then up to column permutation
we have: 1 0 1 0 1 0 1

0 1 1 0 0 1 1
0 0 0 1 1 1 1

 ,

and we have the Hamming code.

8. Exercises

Exercise 8.1. Compute the parameters of the n-repetition code C ⊆ Fn
q . How many

errors can be corrected? Give the weight enumerator polynomial and the generator
matrix.

Exercise 8.2. Idem for the parity check in example 1.4.

Exercise 8.3. Check that the parity check code in Example 1.4 can correct until 3 erased
bit.
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Exercise 8.4. Let #Q = q and x ∈ Q. Prove that |Si(x)| =
(
n
i

)
(q − 1)i and that

|Br(x)| =
∑r

i=0

(
n
i

)
(q − 1)i.

Exercise 8.5. Explain the Magic Trick.

Exercise 8.6. Take the even weight code C ⊆ Fn
q with n ≥ 2: all words with even

weight. Compute the parameters n, q,M, k, w, d,R = k/n. Check that it is only a linear
code for q = 2 and give a generator matrix.

Exercise 8.7. Check the Mac Willians identity for C the trivial codes {0} and Fn
q . Also

for C the code in exercise 8.6 with q = 2.

Exercise 8.8. Take the F5 linear code with generator matrix1 1 1 1 1 0
0 1 2 3 4 0
0 1 4 4 1 1


Compute the reduced row echelon form and its parameters.

Exercise 8.9. Prove that the q-ary Hamming code Hr(q) has parameters [n, n − r, 3]
for r ≥ 2. And the q-ary simplex code Sr(q) is a constant weight code with parameters
[ q

r−1
q−1 , r, q

r−1].

Exercise 8.10. Prove that the binary even weight code and the repetition code are dual.

Exercise 8.11. Prove that the code over F5 given by the generator matrix

G =

1 0 0 1 3 3
0 1 0 2 2 4
0 0 1 3 1 3


is self-dual.

Exercise 8.12. Give an example of a ternary [4, 2] self-dual code and show that there is
no ternary self-dual code of length 6.

Elisa Lorenzo Garćıa, Univ Rennes, CNRS, IRMAR - UMR 6625, F-35000 Rennes,
France.

Email address: elisa.lorenzogarcia@univ-rennes1.fr
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