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1. Lecture 4

1.1. Cyclic codes.

Definition 1.1. the cyclic shift of a word (c0, c1, .., cn−1) ∈ Fnq is defined by σ(c) =
(cn−1, c0, c1, .., cn−2).

Definition 1.2. C an Fq-linear code is cyclic if σ(c) ∈ C for all c ∈ C.

Example 1.3. The F7-code given by the generator matrix G =

1 1 1 1 1 1
1 3 2 6 4 5
1 2 4 1 2 4

 is

cyclic since σ(g1) = g1, σ(g2) = 5g2 and σ(g3) = 4g3.

Proposition 1.4. The dual of a cyclic code is again cyclic.

Proof. σ(x)c = xσn−1(c) = 0 for all c ∈ C then σ(x) ∈ C⊥. �

Definition 1.5. Cq,n = Fq[x]/(xn − 1)

Let us consider φ : Fnq → Cq,n : c 7→ c0 + c1x+ ...+ cn−1x
n−1. We also denote φ(c) by

c(x).

Proposition 1.6. φ is an isomorphism of vector spaces. It defines a one-to-one corre-
spondence between ideals of Cq,n and cyclic codes in Fnq .

Proof. φ(ei) = xi, φ is given by the identity in the basis {ei} and {xi}. Let I be an ideal
in Cq,n. Let C = φ−1(I). Then C is a linear code. Let c ∈ C, then c(x) = φ(c) ∈ I and
x · c(x) ∈ I and xc(x) = x(c0 + c1x + ... + cn−1x

n−1) = cn−1 + c0x + ... + cn−2x
n−1. So

σ(c) = φ−1(xc(x)) ∈ C and C is cyclic.
Conversely, I = φ(C) with C cyclic. then I is closed under addition, and for all

i ∈ {0, ...n− 1}, if φ(c) ∈ I then xiφ(c) = φ(σi(c)) ∈ I. �
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Fq[x] is a principal ideal domain, hence all ideals are generated by one element. It’s
unique if monic. And for Cq,n if we take it of minimal degree. Such polynomial it’s called
the generator polynomial of C.

Example 1.7. The generator polynomial of Fnq is 1 and of {0} is xn − 1. The repetition

code and its dual have as generators polynomials xn−1 + ...+x+ 1 and x−1 respectively.
Recall that for the repetition code we have

1 −1 0 ... 0 0
0 1 −1 ... 0 0
... ... ... ... ... 0
0 0 0 ... 1 −1
−1 0 0 ... 0 1

 .

Proposition 1.8. g(x) ∈ Fnq monic is a generator polynomial iff g | xn − 1

Proof. the ideal also contain xn − 1, so the generator divides the gcd of the other poly-
nomial and xn − 1. �

Example 1.9. (x3 +x+1)(x5−x3−x2 +x−1) = x8−1 ∈ F3[x] So the first one generates
a ternary cyclic code of length 8.

G =


1 1 0 1 0 0 0 0
0 1 1 0 1 0 0 0
0 0 1 1 0 1 0 0
0 0 0 1 1 0 1 0
0 0 0 0 1 1 0 1


the other shifted vectors are linear combination of this ones. Hence, k = 5. We compute

red(G) =


1 0 0 0 0 1 1 0
0 1 0 0 0 0 1 1
0 0 1 0 0 2 2 1
0 0 0 1 0 2 1 2
0 0 0 0 1 1 0 1


and the parity check one 2 0 1 1 2 1 0 0

2 2 1 2 0 0 1 0
0 2 2 1 2 0 0 1


and we find d = 3.

Proposition 1.10. For a cyclic code deg(g) = n− k.

Proof. Generated by < g, xg, ..., xk−1g > and the matrix generated by
g0 g1 g2 ... ... ... 0
0 g0 g1 ... ... ... 0
... ... ... ... ... ... 0
0 0 0 ... g0 ... gl


has rank at least l. �

Definition 1.11. h(x) = xn−1
g(x)

is called the parity check polynomial of C.

Proposition 1.12. c(x) ∈ C iff c(x)h(x) = 0

Proof. c(x) ∈ C iff c(x) ∈ (g(x)) iff c(x)h(x) = 0. �
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Proposition 1.13. h̃, the monic reciprocal of h, is the generator polynomial of C⊥

Proof. If k = 0 or n, then g = xn − 1 or 1 and it is true. Otherwise, g = g0 + g1x +
... + gn−kx

n−k, h = h0 + ... + hkx
k and for t 6= 0, n we have

∑
i giht−i = 0. In particular

g0hk + g1hk−1 + ... = 0 and h̃ ∈ C⊥, by a dimension argument we have the equality. �

Example 1.14. [6, 3] cyclic code over F7 with g(x) = x3 + 3x2 + x + 6. Then h(x) =
x3 + 4x2 + x+ 1. Then g⊥(x) = x3 + x2 + 4x+ 1 and

G⊥ = H =

1 4 1 1 0 0
0 1 4 1 1 0
0 0 1 4 1 1

 ,

and d = 4.

Definition 1.15. Let α a primitive root of xn−1 over an extension Fmq of Fq (we assume

p 6| n), then Z(C) := {i ∈ Zn | c(αi) = 0 ∀c ∈ C}.
Proposition 1.16. g(x) =

∏
i∈Z(C)(x− αi)

Proof. Write g(x) =
∏

i∈Zg
(x−αi) c(x) = a(x)g(x) then c(αi) = 0 for all in ∈ Z(C) then

Zg ⊆ Z(C).
We have g(x) ∈ C, then g(αi) = 0 for all i ∈ Z(C) then Z(C) ⊆ Zg. �

Proposition 1.17. Z(C⊥) = Zn/{−i | i ∈ Z(C)}

Proof. h(x) = xn−1
g(x)

and g⊥(x) = h̃(x) �

1.2. BCH Bound: Bose-Chaudhuri-Hocquenghem.

Proposition 1.18. Let C be a cyclic code that has at least δ− 1 consecutive elements in
Z(C) modulo n, then d ≥ δ.

Proof. Let I be the defining set for a cyclic code C, then c(αi) = 0 for all i ∈ I. Let H̃ be
the #I × n matrix αij. Let C̃ be the Fmq -linear code with parity check matrix H̃. Then

C is the restriction of C̃ and any bound of the minimum distance for C̃ holds for C.
For our case: (αij | b ≤ i ≤ b + δ − 2, 0 ≤ j ≤ n) is a parity check matrix of a code

C̃ that has C as a subfield code. C̃ is equivalent to the one with parity check matrix
(αij | 0 ≤ i ≤ δ−2, 0 ≤ j ≤ n). As a generator matrix of the dual we get an MDS code as
in example ??. So with parameters [n, δ−1, n−δ−2], so for the dual [n, n−δ+1, δ]. �

Definition 1.19. a cyclic code with defining set {b, b+ 1, ..., b+ δ − 2} is called a BCH
code with designed minimum distance δ. It’s called narrow sense if b = 1 and primitive
if n = qm − 1.

Definition 1.20. δBCH = largest integer δ ≤ n + 1 such that there is a subset of Z(C)
consisting on δ − 1 elements that are consecutive of some period modulo n.

Example 1.21. n = 17, q = 2. Zα = {1, 2, 4, 8, 9, 13, 15, 16} has δ = 3 because at most
2 consecutive ones, but Zα6 = {3, 5, 6, 7, 10, 11, 12, 14} (we multiply by 3) has δ = 4.
Actually, δBCH = 4.

Theorem 1.22. d ≥ δBCH

The APGZ (Arimoto-Peterson-Gorenstein-Zierler) decoding algorithm for
cyclic codes. It efficiently corrects errors of weight at most w ≤ (δ − 1)/2, even if the
minimum distance bigger than δ. You use the information you are sure you have to give
a linear system w × w that describe the errors.
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1.3. Polynomial Codes.

Definition 1.23. (Reed-Solomon Codes) α ∈ Fq, primitive, n = q − 1. 0 ≤ b, k,≤ n.
gb,k(x) = (x− αb)...(x− αb+n−k−1).
RSk(n, b) is the q-ary cyclic code with generator gb,k.

Proposition 1.24. RSk(n, b) has length n = q − 1, is cyclic, linear and MDS of dim.
k. Moreover, (RSk(n, b))

⊥ = RSn−k(n, n− b+ 1).

Proof. n = q − 1, cyclic and linear by definition. deg gb−k(x) = n− k, then dimension k.
U + {b, b+ 1, .., b+ n− k − 1} def. set, then by BCH bound d ≥ n− k + 1 and by the

Singleton bound equal. Then MDS.
For the dual we get the def. set Zn/U = {n− b− 1, ..., n− b + k} then RSn−k(n, n−

b+ 1). �

Applications: for CD’s, it was the first use of strong error correction coding in a
mass-produced consumer product. Also for two-dimensional bar codes.

Definition 1.25. f(x) ∈ Fq[x], ev(f(x)) = (f(1), f(α), ..., f(αn−1))

Proposition 1.26. RSk(n, b) = {ev(xn−b+1f(x)) | f(x) ∈ Fq[x], deg(f) < k}

Proof. ev(xn−b+1xi) = (1, αn−b+1+i, ..., α(n−1)(n−b+1−i))
The parity check matrix is H = (αij | b ≤ i ≤ b− n+ k − 1, 0 ≤ j ≤ n− 1) that is the

generator matrix of the dual RSn−k(n, n− b+ 1). �

Example 1.27. Consider R3(7, 1). It is a cyclic code over F8 with generator polynomial
g1,3(x) = (x− α)(x− α2)(x− α3)(x− α4) where α3 = α+ 1. So it is the code in exercise
3.6 with

G =

1 1 1 1 1 1 1
1 α α2 α3 α4 α5 α6

1 α2 α4 α6 α α3 α5

 .

In the second description we have: RS3(7, 1) = {ev(f(x)) | f(x) ∈ F8[x], deg(f) < 3}
and we find the 3 rows of G by taking the basis of F8[x]<3 given by 1, x, x2.

1.4. Reed-Solomon decoder. Let c = (f(x1), ..., f(xn)) with deg f < k. Let r ∈ Fnq
with d(r, c) ≤ t. x and r are known. We want to compute c (or f).

(1) Let P = P0(x) + P1(x)y ∈ Fq[x, y] such that degP0 < n − t, degP1 < n − k − t
and for all i ∈ {1, ..., n}, P (xi, ri) = 0.

(2) If t ≤ n−k
2

, then f = −P0

P1
.

Proof. deg(P (x, f(x))) < n− t but it has at least n− t roots, so it is zero. �

Definition 1.28. (Generalized Reed-Solomon codes)

GRSk(a, b) = {evk−r,a(f(x)) ∗ b | f(x) ∈ Fq[x], deg(f) < k}

There is also a generalization for the decoding algorithm.

Definition 1.29. (Alternant codes)

ALTr(a, b) = Fq − linear restriction of (GRSr(a, b))
⊥

Proposition 1.30. Every linear code with d ≥ 2 is an alternant code.

Proof. See Proposition 5.3.4 in Pellikaan, Wu, Bulygin, Jurrius book ”Codes, Cryptology
and Curves with Computer Algebra”. �
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RS ⊆ BCH ⊆ cyclic ⊆ poly. ⊆ linear
Goppa ⊆ alternant ⊆ linear
RS ⊆ RM
RS ⊆ GRS

Definition 1.31. ((classical) Goppa codes, or polynomial ones) L = (a1, .., an), ai ∈ Fmq .
g ∈ Fmq [x] such that g(ai) 6= 0.

Γ(L, g) = {c ∈ Fmq |
∑ ci

x− aj
≡ 0 mod g(x)}

Proposition 1.32. Γ(L, g) = ALTr(a, b) with bj = 1
g(aj)

def2

Definition 1.33. (q-ary Reed-Muller code) Let P = {P1, ..., Pn} be an enumeration of
the elements of Fmq with n = qm. Let 0 ≤ r ≤ m(q − 1)

RMq(r,m) = {evP (f) | d ∈ Fq[x1, .., xm], deg(f) ≤ r}

2. Lecture 5

2.1. Algebraic Geometry Goppa codes. Let X be an absolutely irreducible non-
singular projective curve over Fq. Let P1, .., Pn be rational points on X. Set D =
P1 + ... + Pn. Let G another rational divisor that has support disjoint with D and such
that 2g − 2 < degG < n (this last condition is not really necessary).

Definition 2.1. (Algebraic-geometry code or geometric RS code)

CL(D,G) = {(f(P1), ..., f(Pn))|f ∈ L(G)}.

Theorem 2.2. The code CL(D,G) has dimension k = deg(G) − g + 1 and minimum
distance d ≥ n− deg(G).

Theorem 2.3. (Riemann-Roch) Let D be a divisor on a non-singular projective curve of
genus g, then for any canonical divisor K we have

`(D)− `(K −D) = deg(D)− g + 1

Corollary 2.4. (1) deg(K) = 2g − 2
(2) If deg(D) > 2g − 2 then `(D) = deg(D)− g + 1

Proof. If f(P ) = 0 then f ∈ L(G −D) but `(G −D) = 0 because deg(G −D) < 0 and
deg(G) > 2g − 2 so `G = deg(G)− g + 1.

If f(P ) has weight d then it is in L(G−E) where E = Pi1 + ...+Pin−d
, so deg(G−E) ≥

def(f) = 0, hence deg(G)− n+ d ≥ 0 �

Definition 2.5. Let D be a divisor on a curve X. We define

Ω(D) = {ω ∈ Ω1(X) | (ω)−D ≥ 0},
and we denote its dimension by δ(D) = `(K−D) (there is an isomorphism between both
vector spaces sending f to fω) called the index of speciality of D.

Definition 2.6. (ω) =
∑

P∈X vP (ω)P . ω = f d t, f =
∑
ait

i, then ResP (ω) = a−1 and
we have that

∑
P∈X ResP (ω) = 0.

Definition 2.7. The linear code CΩ(D,G) of length n over Fq is the image of Ω(G−D)
by the linear map ResP (η) = (ResP1(η), ...,ResPn(η)).

Theorem 2.8. The code CΩ(D,G) has dimension k∗ = n−deg(G) +g−1 and minimum
distance d∗ ≥ deg(G)− 2g + 2.
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Proof. If ResP (η) = 0 then η ∈ Ω() and ... δ(G − D) = `(K − G + D) = 2g − 2 + n −
deg(G)− g + 1. �

Example 2.9. Let L = (α1, ..., αn) be a set of n distinct elements of Fqm . Let g ∈ Fqm [x]
not zero at the αi. The classical Goppa code Γ(L, g) is defined as

{c ∈ Fnq |
∑ ci

x− αi
≡ 0 mod g}.

Let us take X = P1, Pi = (αi : 1), Q = (1 : 0), D = P1 + ... + Pn and E the divisor of
zeros of g. Then Γ(L, g) = CΩ(D,E −Q).

Theorem 2.10. The codes CL(D,G) and CΩ(D,G) are dual codes.

Proof. First notice that k + k∗ = n. Now let f ∈ L(G) and η ∈ Ω(G − D). Let
us check that the inner product of their images is 0. The differential fη has no poles
except maybe at the Pi and with residue f(Pi) ResPi

(η). Then
∑

Pi
f(Pi) ResPi

(η) =∑
P∈X f(Pi) ResPi

(η) = 0 �

Theorem 2.11. (Hasse-Weil-Serre bound) Let X be a curve of genus g over Fq. Let
Nq(X) denote the number of Fq-rational points on X. Then

| Nq(X)− q − 1 |≤ gb2√qc

Let X be a non-singular genus g curve over Fq. Then an algebraic geometric code
satisfy k + d ≥ n + 1 − g. For the information rate R = k/n and the relative minimum
distance δ = d/n we have R + δ ≥ 1 − g−1

n
. In order to construct asymptotically good

codes we need curves with low genus and many Fq-rational points.

Definition 2.12. A sequence of curve {Xm} over Fq is called asymptotically good if

limm→∞Nq(Xm) =∞, limm→∞ g(Xm) =∞ and limm→∞
Nq(Xm)

g(Xm)
exists and is positive.

Theorem 2.13. (Tsfasman-Vladut-Zink bound) Let q be a square. For every R, there
exists an asymptotically good sequence of codes C such that R(C) + δ(C) ≥ 1− 1√

q−1

Proof. (idea) Drinfeld-Vladut bound plus modular curves. �

Garćıa-Stichtenoth towers.
Serre book and https://manypoints.org/

Example 2.14. X : y2 + y = x3 over F4 is an elliptic curve with g(C) = 1. F4 = F2[w]
with w2 + w + 1 = 0.

Let us take Q = (0 : 1 : 0) and P = {P1, .., P8} with P1 = (0 : 0 : 1), P2 = (0 : 1 : 1),
P3 = (1 : w : 1), P4 = (1 : w2 : 1), P5 = (w : w : 1), P6 = (w : w2 : 1), P7 = (w2 : w : 1)
and P8 = (w2 : w2 : 1). We take G = 5Q, then L(G) =< 1, x, y, x2, xy >. The code
CL(D,G) is generated by 

1 1 1 1 1 1 1 1
0 0 1 1 w w w2 w2

0 1 w w2 w w2 w w2

0 0 1 1 w2 w2 w w
0 0 w w2 w2 1 1 w


we have n = 8, k = 5 and d = 3(≤ n− k = 3 and ≥ n− deg(G) = 3).
We have Ω1(X) = 〈dx〉, and then Ω(G − D) ' L(D − G) and `(D − G) = 3 − 1 + 1

and actually L(D − G) = 〈 1
x(x−1)(x−ω)

, 1
x(x−1)(x−ω2)

, 1
(x−1)(x−ω)(x−ω2)

〉 so we get the code
6
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generated by (we take y/x2 for the uniformizer of P1 and P2, x− 1 for P3 and P4, x− ω
for P5 and P6, etc.)

−ω2 ω2 ω ω 1 1 0 0
−ω ω ω2 ω2 1 1 0 0
0 0 ∗ ∗ ∗ ∗ ∗ ∗


with n = 8, k = 3 and d = 5.

2.2. Some crypto. Nowadays mostly all ciphering schemes are based on difficult prob-
lems on Number Theory, like integers factorization (RSA) and the discrete logarithm
problem (Diffie-Hellman, El Gammal).

(1) 1982: Feynman noticed that some quantum phenomenon can not be reproduce
by a computer.

(2) 1994 Shor propose a quantum algorithm that factors an integer N in log(N)
operations.

(3) 1996: Grover gives a quantum algorithm for finding an element in an unsorted

list of length N in O(
√
N) operations.

In 2007, the NIST call for post-quantum cipher schemes. Those ones are based on:

(1) Euclidean lattices
(2) Rank Metric Codes
(3) Hamming Metric Codes
(4) Elliptic curves isogenies
(5) Polynomial systems of equations

Advantages: ciphering and deciphering very fast, 5 and 150 times faster than RSA.
Post-quantum.

Disadvantages: huge public keys.

2.3. The McEliece Cryptosystem.

(1) F is a set of codes of dimension k in Fnq
(2) S is a set of ”secrets” with a sujertive map C : S → F
(3) We associate to each s ∈ S an algorithm D(s) that corrects t errors for C(s).

The scheme:

(1) Secret key: s ∈ S with generator matrix G
(2) Alice take a random invertible S and permutation matrix P
(3) Private key: (S,G, P )
(4) Public key: the basis G′ = SGP of C(s)
(5) Encryption: Bob wants to send the message m to Alice, he takes c = mG′ ∈ C(s)

and a random e of weight t. He produces y := c+ e.
(6) Alice receives y.
(7) Decryption: c′ = cP−1

(8) apply D(s) to c′ ir order to find m′.
(9) she computes m = m′S−1.

It has been used in the secure of an Instant Messenger, but the public key size is really
a problem.
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Example 2.15. Suppose ∫ equals to the [7, 4, 3] Hamming code, and the public key is
the generator matrix

G =


1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

 .

Alice want to send the message m = (1, 0, 1, 1) to Bob. Bob create an invertible matrix
S and a random permutation matrix P that will keep secret.

S =


1 0 0 1
1 1 0 1
0 1 0 1
1 1 1 0

 , P = (1264753)

Bob gives the public key G1 = SGP . Alice generates a random error vector e =
(0, 1, 0, 0, 0, 0, 0). Then y = mG1 + e = (0, 0, 0, 1, 1, 0, 0) is sent.

Bob needs to decrypt: y1 = yP−1 = (0, 0, 1, 0, 0, 0, 1). By applying the parity check
matrix and changing the corresponding bit, it yields x1 = (0, 0, 1, 0, 0, 1, 1). Bob solves
now x0G = x1. x0 = (0, 0, 1, 0). Bob finally gets x = x0S

−1 = (1, 0, 1, 1) that was the
original message.

3. Exercises

Exercise 3.1. The Hamming [7, 4, 3]2-code is non-cyclic but equivalent to a cyclic one.

Exercise 3.2. Prove that the code over Fq generated by
1 1 1 1 0 0 0
0 1 1 1 1 0 0
0 0 1 1 1 1 0
0 0 0 1 1 1 1


is not cyclic.

Exercise 3.3. Let C be a cyclic code over Fq of length 7 such that (1, 1, 1, 0, 0, 0, 0) is
an element of C. Show that C is a trivial code if q is not a power of 3.

Exercise 3.4. Find the generator matrix of the binary cyclic code of length 7 generated
by 1 + x+ x5.

Exercise 3.5. Show that 2 +x2 +x3 is the generator polynomial of a ternary cyclic code
of length 13.

ex:RS

Exercise 3.6. Let α ∈ F8 such that α3 = α + 1. Let the generator matrix be

G =

1 1 1 1 1 1 1
1 α α2 α3 α4 α5 α6

1 α2 α4 α6 α α3 α5

 .

Show that this code is cyclic and compute the generator polynomial.

Exercise 3.7. Prove the equivalence of definitions 1.9 in Lecture 3 and 1.33.

Elisa Lorenzo Garćıa, Univ Rennes, CNRS, IRMAR - UMR 6625, F-35000 Rennes,
France.

Email address: elisa.lorenzogarcia@univ-rennes1.fr
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