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* Cycle code and graph code of a graph




INTRODUCTION ON GRAPH THEORY




Graph

* Agraph I is a pair (V,E) where IV is a nonempty set and E is a
set disjoint from V. The element of V are called
vertices/nodes, and members of E are called edges.

* Edges are incident to one or two vertices which are called the
ends of the edge.

* If an edge is incident with exactly one vertex, then its is called
loop,

@®: node
——: edge

— : loop

|V/=4and [E[] =6




Adjacent Vertices

* If u and v are vertices that are incident with an edge, then
they are called neighbors or C.

* Two edges are called parallel if they are incident with the
same vertices.

* The graph is called simple if it has no loops and no parallel
edges




Graph: Path and Cycle

* Undirected:
I:I ®: node
[ ® o0
——: edge
(@)

* Directed:

—». arc

(a)
(b)
o0 0 0 /. >
(@) \ y
(b)

* Mixed:




Graph : Complete Graph

(a) Complete bipartite graph
(b) Complete graph

K3,4 K5
(a) (b)

Clique graph: Connected Components:

AL e




Subgraph

LetT' = (V,E) be a graph. Suppose that V' € Vand E’ € E and
all the endpoints of €’ in E” are in V. ThenT" = (V,E) is a
graph and it is called a subgraph of I'.




Two vertices are connected

* Two vertices u and v are connected by a path from u to v if
there is a t-tuple of mutually distinct vertices
(v, vy, ..., V) Withu = vy and v = v, and (t — 1)-tuple of
mutually distinct edges (eq, €5, ..., €;_1) such that ¢; is
incident withv; and v;,4 forall1 < i <'t.

* If moreover e; is an edge that is incident with u and v and
distinct from e; forall i < t, then (eq, €5, ...,€:_1,€;) is called
a cycle. The length of the smallest cycles is called the girth of
the graph and is denoted by y(I')




Connected Graph

* The graph is called connected if every two vertices are
connected by a path.

* A maximal connected subgraph of I is called a connected
component of I'.

* IfT" is not connected, then the vertex set V of I is a disjoint
union of subset V; and the set of edge is disjoint union of
subset E; such that I; = (V;, E;) is a connected component of
['. The number of connected component of I' is denoted by

c(l)




Adjacency Matrix

-

The Adjacency Matrix of a graph I', denoted A(I'), is an
n X n matrix that for each (u, v) contains the number of

edges in G between vertex u and vertex v.

/




Examples

Adjacency matrix
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Incidence Matrix

* LetT' = (V, E) be a finite graph. Suppose that I/ consists of m
elements enumerated by v4, v,, ..., V,;,. Supposet that E
consists of m elements enumerated by eq, ..., e,,. The
incidence matrix /(') is an m X n matrix with entries
a;;j defined by

1, if e is incident with v; and vy for some i < k
* a;j =4 —1, if ¢ isincident with v; and vy for some i > k
0, otherwise




CYCLE CODE AND GRAPH CODE OF A
GRAPH




Graph Code

* The graph code Cr of [ over F is the F; linear code that is
generated by the rows of the incidence matrix I(T").

* The cycle code of I'is the dual of the graph code of T'.




Notes

* Cycle code is also referred to as a graphic code, and its dual as
a cographic code




Cycle codes of graphs

* I' = (V, E) undirected connected graph with no loops, no
multiple edges.

E = {eey....,6m}

Subgraph H c T <> Characteristic vectorsin {0, 1}™: h; =
1n(e; ).

Cycle c € {0,1}™ : Subgraph with all vertices incident with an
even number of edges.

Cycle space of I' : the vector space over F, of all cycles. It has
* dimensionm — n + 1 (cyclomotic number)

c=(1,1.1,1,0.1,1,0,0,0)



Cycle Code of Graphs

Cycle code of I" : the linear binary code [n, k, d] defined by the
cycle space of I with

(i) length m (number of edges)

(ii) dimensionk = m — n + 1 (cyclotomic number)

(iii) minimum distance d = girth ofT'(length of smallest cycle).
(iv) incidence matrix of I' <= parity-check matrix of the code
(low—density parity-check code)




* Binary Code of lengthN = ab > Arraya X b

0
(100010001 ) — 0
1

o O =
o = O

* Code on GF(2?) of length N’ = a - Code on GF(2)

1 00
(1, x, x?) — 0 1 0
0 0 1




* Distance between codewords = Distance between columns:
correction of column errors or column erasures

* Array codes are used to address bursts of errors (as opposite
to random errors).

* The are implemented in the standards of CD technology (by
using Reed—Solomon codes).




Array Cycle Code

* Graph G = (V,E) withm = ab edges
* Partition the edges in columns

GD b2 3

bc cd de
a 52 13 24

ST
]

d4 eb
ea ab
35 41




@ Partition the edges in columns — edge-coloring of the graph.

al b2 c3 db4 €5
bc cd de ea ab
52 13 24 35 41




* Array Cycle code: The graph cycle code turned into an array
code.




Minimum Distance

The minimum distance of the array cycle code is the minimum
number of colors in a cycle.

In the example, the code has |[C | = 215—-10+ 1 and
D=4=5—-1og8|C| + 1.

It is an MDS (Maximum Distance Separating) code.

This means that every three colors span a spanning tree.




Proposition

* Let I' be a finite graph. Then the cycle code of I is a code with
parameters [n, k,d], wheren = |E|,k = |E| — |V| + c(T),
and d = y(I'). These parameters are independent of the
choice of the field F;




B—codes
e MDS Array cycle codes with D = 3.

Edge colored graph such that every two colors make a spanning tree

@ Largest length «—— maximum number of edges.
Complete graphs

@ Every two colors make an acyclic graph «—— every color is a matching
(K, has triangles).

@ They provide MDS array cycle codes with a = (n—1)/2, b= n,
F>—dimension n — 2a and D = 3.
Known in the literature as B—codes.




Correction algorithms: Column erasure correction

The sent codeword is (

1 1 101
0 01 01

@ Two columns have been erased.

1 1 01

0 1 0 1
Parity check of endvertex 3:
Parity check of endvertex 4:
Parity check of endvertex 2:
Parity check of endvertex 5:
The algorithm is linear in n.

edge eg is not in the word.
edge eg is not in the word.
edge e is in the word.
edge e is in the word.

1




Correction algorithms: Errors in one column

1 01 01
0 1 101

@ All errors are located in a single column.

The received codeword is (

@ Find the vertices with unsatisfied parity check vertices.
@ Test the color which covers the selected vertices.
@ Exchange the bit of the edges covering these selected vertices.

@ [he algorithm is linear in n.




The dual B—codes

@ [he dual of a MDS code is again MDS.

@ [he dual of a B-code is the array cocycle code of K,,. Codewords are
sets of edges joining a set with its complement.

@ The minimum distance is D = n — 1 (the number of matchings).




More examples of MDS array cycle codes

For a graph G the above correction algorithms work if G admits an
edge—coloring such that every D — 1 colors make a spanning tree.

@ [he Petersen graph provides an MDS array cycle code with D = 4.
Unfortunately D = 4 implies n < 10.

@ For D = 3 the complete bipartite graphs K,,_1 , are conjectured to
admit such an edge—coloring.
Equivalently K, , admits a coloring such that two colors span a
Hamiltonian cycle.
Known to be the case for n = p, n =2p — 1, n = p?, and small values
of n.

0a 2d 4b 1le 3c
3d 0b 2e 4c 1a
1b 3e 0c 2a 4d
4e 1c 3a 0d 2b
2c 4a 1d 3b Qe
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