CODES ON GRAPH

Kiki Ariyanti Sugeng
CIMPA Research School on Group Actions in Arithmetic and Geometry February 27, 2020

Outline

- Introduction on graph theory
- Cycle code and graph code of a graph

INTRODUCTION ON GRAPH THEORY

Graph

- A graph Γ is a pair (V, E) where V is a nonempty set and E is a set disjoint from V . The element of V are called vertices/nodes, and members of E are called edges.
- Edges are incident to one or two vertices which are called the ends of the edge.
- If an edge is incident with exactly one vertex, then its is called loop,

- : node -_: edge

$|V|=4$ and $|E|=6$

Adjacent Vertices

- If u and v are vertices that are incident with an edge, then they are called neighbors or \subseteq.
- Two edges are called parallel if they are incident with the same vertices.
- The graph is called simple if it has no loops and no parallel edges

Graph: Path and Cycle

- Undirected:

(a)
- Directed:
- Mixed:

(a)

(b)

(b)

Graph : Complete Graph

(a) Complete bipartite graph
(b) Complete graph

Clique graph :
Connected Components:

(a)

(b)

。

Subgraph

Let $\Gamma=(V, E)$ be a graph. Suppose that $\mathrm{V}^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$ and all the endpoints of e^{\prime} in E^{\prime} are in V^{\prime}. Then $\Gamma^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is a graph and it is called a subgraph of Γ.

Two vertices are connected

- Two vertices u and v are connected by a path from u to v if there is a t-tuple of mutually distinct vertices $\left(v_{1}, v_{2}, \ldots, v_{t}\right)$ with $u=v_{1}$ and $v=v_{t}$, and ($t-1$)-tuple of mutually distinct edges $\left(e_{1}, e_{2}, \ldots, e_{t-1}\right)$ such that e_{i} is incident with v_{i} and v_{i+1} for all $1 \leq i<t$.
- If moreover e_{t} is an edge that is incident with u and v and distinct from e_{i} for all $i<t$, then ($e_{1}, e_{2}, \ldots, e_{t-1}, e_{t}$) is called a cycle. The length of the smallest cycles is called the girth of the graph and is denoted by $\gamma(\Gamma)$

Connected Graph

- The graph is called connected if every two vertices are connected by a path.
- A maximal connected subgraph of Γ is called a connected component of Γ.
- If Γ is not connected, then the vertex set V of Γ is a disjoint union of subset V_{i} and the set of edge is disjoint union of subset E_{i} such that $\Gamma_{i}=\left(V_{i}, E_{i}\right)$ is a connected component of Γ. The number of connected component of Γ is denoted by $c(\Gamma)$

Adjacency Matrix

The Adjacency Matrix of a graph Γ, denoted $A(\Gamma)$, is an $n \times n$ matrix that for each (u, v) contains the number of edges in G between vertex u and vertex v.

Adjacency matrix : Examples

$$
\begin{gathered}
\\
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{4} \\
v_{5}
\end{gathered}\left[\begin{array}{llllll}
0 & v_{2} & v_{3} & v_{4} & v_{5} \\
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

$$
\begin{array}{cccc}
v_{1} & v_{2} & v_{3} \\
v_{1} \\
v_{2} & {\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
v_{3} & 1 & 0
\end{array}\right]}
\end{array}
$$

v_{1}
v_{1}
v_{2}
v_{3}
v_{4}
v_{5}
$v_{6}$$\left[\begin{array}{llllll}v_{2} & v_{3} & v_{4} & v_{5} & v_{6} \\ v_{6} & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0\end{array}\right]$

Incidence Matrix

- Let $\Gamma=(V, E)$ be a finite graph. Suppose that V consists of m elements enumerated by $v_{1}, v_{2}, \ldots, v_{m}$. Supposet that E consists of m elements enumerated by e_{1}, \ldots, e_{n}. The incidence matrix $I(\Gamma)$ is an $m \times n$ matrix with entries $a_{i j}$ defined by
- $a_{i j}=\left\{\begin{array}{l}1, \text { if } e_{j} \text { is incident with } v_{i} \text { and } v_{k} \text { for some } i<k \\ -1, \text { if } e_{j} \text { is incident with } v_{i} \text { and } v_{k} \text { for some } i>k \\ 0, \text { otherwise }\end{array}\right.$

CYCLE CODE AND GRAPH CODE OF A GRAPH

Graph Code

- The graph code C_{Γ} of Γ over F_{q} is the F_{q} linear code that is generated by the rows of the incidence matrix $I(\Gamma)$.
- The cycle code of Γ is the dual of the graph code of Γ.

Notes

- Cycle code is also referred to as a graphic code, and its dual as a cographic code

Cycle codes of graphs

- $\Gamma=(V, E)$ undirected connected graph with no loops, no multiple edges.
- $E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$
- Subgraph $H \subset \Gamma \leftrightarrow$ Characteristic vectors in $\{0,1\}^{m}: h_{i}=$ $1_{H}\left(e_{i}\right)$.
- Cycle $c \in\{0,1\}^{m}$: Subgraph with all vertices incident with an even number of edges.
- Cycle space of Γ : the vector space over F_{2} of all cycles. It has
- dimension $m-n+1$ (cyclomotic number)

$$
c=(1,1,1,1,0,1,1,0,0,0)
$$

Cycle Code of Graphs

Cycle code of Γ : the linear binary code $[n, k, d]$ defined by the cycle space of Γ with
(i) length m (number of edges)
(ii) dimension $k=m-n+1$ (cyclotomic number)
(iii) minimum distance $d=$ girth of Γ (length of smallest cycle).
(iv) incidence matrix of $\Gamma \leftrightarrow$ parity-check matrix of the code (low-density parity-check code)

- Binary Code of length $N=a b \quad \rightarrow \quad$ Array $a \times b$

$$
(100010001) \quad \longrightarrow\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

- Code on $G F\left(2^{b}\right)$ of length $N^{\prime}=a \rightarrow$ Code on GF(2)

$$
\left(1, x, x^{2}\right) \quad \longrightarrow\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

- Distance between codewords \rightarrow Distance between columns: correction of column errors or column erasures
- Array codes are used to address bursts of errors (as opposite to random errors).
- The are implemented in the standards of CD technology (by using Reed-Solomon codes).

Array Cycle Code

- Graph $G=(V, E)$ with $m=a b$ edges
- Partition the edges in columns

- Partition the edges in columns \longrightarrow edge-coloring of the graph.

$$
\left(\begin{array}{lllll}
a 1 & b 2 & c 3 & d 4 & e 5 \\
b c & c d & d e & e a & a b \\
52 & 13 & 24 & 35 & 41
\end{array}\right)
$$

- Array Cycle code: The graph cycle code turned into an array code.

Minimum Distance

- The minimum distance of the array cycle code is the minimum number of colors in a cycle.
- In the example, the code has $|C|=215-10+1$ and $D=4=5-\log 8|C|+1$.
- It is an MDS (Maximum Distance Separating) code.
- This means that every three colors span a spanning tree.

Proposition

- Let Γ be a finite graph. Then the cycle code of Γ is a code with parameters $[n, k, d]$, where $n=|E|, k=|E|-|V|+c(\Gamma)$, and $d=\gamma(\Gamma)$. These parameters are independent of the choice of the field F_{q}
- MDS Array cycle codes with $D=3$.

Edge colored graph such that every two colors make a spanning tree

- Largest length \longleftrightarrow maximum number of edges.

Complete graphs

- Every two colors make an acyclic graph \longleftrightarrow every color is a matching (K_{n} has triangles).
- They provide MDS array cycle codes with $a=(n-1) / 2, b=n$, \mathbb{F}_{2}-dimension $n-2 a$ and $D=3$.
Known in the literature as B-codes.

Correction algorithms: Column erasure correction The sent codeword is $\left(\begin{array}{ccccc}1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1\end{array}\right)$

- Two columns have been erased.

$$
\left(\begin{array}{lllll}
1 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1
\end{array}\right)
$$

- Parity check of endvertex 3: edge e_{9} is not in the word.
- Parity check of endvertex 4: edge e_{8} is not in the word.
- Parity check of endvertex 2: edge e_{2} is in the word.
- Parity check of endvertex 5: edge e_{1} is in the word.
- The algorithm is linear in n.

Correction algorithms: Errors in one column
The received codeword is $\left(\begin{array}{ccccc}1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1\end{array}\right)$

- All errors are located in a single column.
- Find the vertices with unsatisfied parity check vertices.
- Test the color which covers the selected vertices.
- Exchange the bit of the edges covering these selected vertices.
- The algorithm is linear in n.

The dual B-codes

- The dual of a MDS code is again MDS.
- The dual of a B-code is the array cocycle code of K_{n}. Codewords are sets of edges joining a set with its complement.
- The minimum distance is $D=n-1$ (the number of matchings).

More examples of MDS array cycle codes

For a graph G the above correction algorithms work if G admits an edge-coloring such that every $D-1$ colors make a spanning tree.

- The Petersen graph provides an MDS array cycle code with $D=4$. Unfortunately $D=4$ implies $n \leq 10$.
- For $D=3$ the complete bipartite graphs $K_{n-1, n}$ are conjectured to admit such an edge-coloring.
Equivalently $K_{n, n}$ admits a coloring such that two colors span a Hamiltonian cycle.
Known to be the case for $n=p, n=2 p-1, n=p^{2}$, and small values of n.

$$
\left[\begin{array}{ccccc}
0 a & 2 d & 4 b & 1 e & 3 c \\
3 d & 0 b & 2 e & 4 c & 1 a \\
1 b & 3 e & 0 c & 2 a & 4 d \\
4 e & 1 c & 3 a & 0 d & 2 b \\
2 c & 4 a & 1 d & 3 b & 0 e
\end{array}\right]
$$

Reference

- R. Pellikaan, X-W Wu, S. Bulygin and R. Jurrius, Codes, cryptography and curves with computer algebra, Cambridge University Press, 2018
- O. Serra, An application to coding theory and cryptography, presented at CIMPA-Indonesia School, February 2 - 13, 2009

THANK YOU

