Exercise sheet nb. 2

February 28, 2020

In all this sheet of exercises, we denote by $M_k = M_k(SL_2(\mathbb{Z}))$ the set of modular forms of weight k for the full modular group and by S_k the subset of cusp forms in M_k .

Exercise 1. Use the formula k/12 to show that E_4 has a simple zero at ρ and no other zero in \mathcal{H} and E_6 has a simple zero at i and no other zero in \mathcal{H} .

- **Exercice 2.** 1. Let $f \in M_k$ and $g \in M_\ell$. Show that fg defines a modular form of weight $k + \ell$. Deduce that $M = \bigoplus_k M_k$ is a graded algebra.
- 2. Show that the map $X \mapsto E_4$; $Y \mapsto E_6$ defines an isomorphism between $\mathbb{C}[X, Y]$ and M. (So we will make the identification with the polynomial algebra in $E_4, E_6 : M = \mathbb{C}[E_4, E_6]$.)

Exercice 3. Show that $M_{14} = \mathbb{C}E_{14}, S_{14} = \{0\}$ and $E_{14} = E_6 E_8 = E_6 E_4^2$

Exercice 4 (Bernoulli numbers). Recall that the Bernoulli numbers B_k are defined by the power series:

$$\frac{x}{e^x - 1} = \sum_{n \ge 0} \frac{B_k}{k!} x^k.$$

- 1. Compute B_0, B_1, B_2 . Show that $B_k = 0$ if k > 1 is odd.
- 2. Using Cauchy product formula, show the induction relation: $(n+1)B_n = -\sum_{k=0}^{n-1} {n+1 \choose k} B_k$.

Exercice 5 (an Euler's formula). The goal of this exercise is to show Euler's formula:

$$\zeta(k) = -\frac{(2i\pi)^k}{2k!} B_k \quad (k \ge 4, even)$$
⁽¹⁾

where B_k is the k-th Bernoulli number.

- 1. We will first show the Euler's lemma: for all $z \in \mathbb{C} \setminus \mathbb{Z}$, $\pi \cot(\pi z) = \frac{1}{z} + \sum_{m \ge 1} \left(\frac{1}{z+m} + \frac{1}{z-m} \right)$. Let's denote by $f(z) = \pi \cot(\pi z)$ and by $g(z) = \frac{1}{z} + \sum_{m \ge 1} \left(\frac{1}{z+m} + \frac{1}{z-m} \right)$.
 - (a) Show that f and g are holomorphic over $\mathbb{C}\backslash\mathbb{Z},$ and have simple poles of residue 1 at every integer.
 - (b) Prove that f and g are odd and 1-periodic.
 - (c) Deduce that h = f g is holomorphic over \mathbb{C} , odd and 1-periodic.
 - (d) Show that h(z) is bounded for $\Im(z) \to \infty$.
 - (e) Deduce that h is bounded on \mathbb{C} and conclude.
- 2. Use Euler's lemma to show that $y \cot(y) = 1 2 \sum_{k \ge 1} \frac{\zeta(2k)}{\pi^{2k}} y^{2k}$.
- 3. Prove that for $\tau = 2iy$, we also get: $y \cot(y) = \frac{\tau}{2} + \sum_{k>1} \frac{B_k}{k!} \tau^k$.
- 4. Conclude to Euler's formula.

Exercice 6. Let $n \in \mathbb{Z}$, n > 0. Recall the q-expansion: $E_k(z) = 1 - \frac{2k}{B_k} \sum_{n>1} \sigma_{k-1}(n) q^n$.

1. Verify that the q-expansion of E_k for $k \leq 14$ is the following:

$$E_{4}(z) = 1 + 240 \sum_{n \ge 1} \sigma_{3}(n)q^{n}$$

$$E_{10}(z) = 1 - 264 \sum_{n \ge 1} \sigma_{9}(n)q^{n}$$

$$E_{6}(z) = 1 - 504 \sum_{n \ge 1} \sigma_{5}(n)q^{n}$$

$$E_{12}(z) = 1 + \frac{65520}{691} \sum_{n \ge 1} \sigma_{11}(n)q^{n}$$

$$E_{8}(z) = 1 + 480 \sum_{n \ge 1} \sigma_{7}(n)q^{n}$$

$$E_{14}(z) = 1 - 24 \sum_{n \ge 1} \sigma_{13}(n)q^{n}.$$

- 2. Prove that $\sigma_7(n) \equiv \sigma_3(n) \pmod{120}$.
- 3. Prove that $11\sigma_9(n) = -10\sigma_3(n) + 21\sigma_5(n) + 5040 \sum_{j=1}^{n-1} \sigma_3(j)\sigma_5(n-j).$
- 4. Prove that

$$E_6^2 - E_{12} = -\frac{762048}{691}\Delta$$

Using the factorisations $504 = 2^3 \cdot 3^2 \cdot 7,65620 = 2^4 \cdot 3^2 \cdot 5 \cdot 7 \cdot 13,762048 = 2^6 \cdot 3^5 \cdot 7^2$, deduce that

$$756\tau(n) = 65\sigma_{11}(n) + 691\sigma_5(n) - 252.691\sum_{j=1}^{n-1}\sigma_5(j)\sigma_5(n-j) \quad (n \ge 1).$$

Deduce the Ramanujan's congruence

$$\tau(n) \equiv \sigma_{11}(n) \pmod{691}.$$