Excercises 1

- 1. Let L be a lattice in \mathbb{R}^n with the usual inner product.
 - (a) Check that covol(L) does not depend on the choice of the basis used to compute it.
 - (b) Compute the covolume of the lattice $L = \operatorname{span}_{\mathbb{Z}} \{ \mathbf{w}_1, \mathbf{w}_2 \}$ in \mathbb{R}^2 , where

$$\mathbf{w}_1 = \begin{pmatrix} 1\\ 0 \end{pmatrix}, \quad \mathbf{w}_2 = \begin{pmatrix} -100\\ 1 \end{pmatrix}.$$

Show that $L = \mathbb{Z}^2$.

(c) Check that $\mathbf{w}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\mathbf{w}_2 = \begin{pmatrix} \cos \frac{2\pi}{3} \\ \sin \frac{2\pi}{3} \end{pmatrix}$ is a basis of the hexagonal lattice in \mathbb{R}^2 . Compute its covolume.

2. Let

$$L = \{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{Z}^3 : x + y + z \equiv 0 \mod 7 \}.$$

Show that $L \subset \mathbb{R}^3$ is a lattice and compute its covolume.

- 3. Let L be a lattice. Let A be an invertible $n \times n$ matrix.
 - (a) Show that A(L) is a lattice.
 - (b) Show that $covol(A(L)) = |\det(A)| covol(L)$.
 - (c) Let $m \in \mathbb{R}_{>0}$. Show that $covol(mL) = m^n covol(L)$.
- 4. Consider

$$L = \{ \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} \in \mathbb{R}^4 : \text{either } x, y, z, w \in \mathbb{Z} \text{ or } x, y, z, w \in \frac{1}{2} + \mathbb{Z} \}.$$

(a) Show that L is a lattice in \mathbb{R}^4 , exhibit a Z-basis of L, and compute the covolume of L.

(b) Show that the sum of the coordinates of any element of L is an integer. Show that the elements whose sum of the coordinates is even is a sublattice L' of L. Compute the covolume of L'.

- 5. Check that the ball $B_2^n = \{(x_1, \ldots, x_n) \in \mathbb{R}^n \mid x_1^2 + \ldots + x_n^2 < 2\}$ is convex and symmetric with respect to the origin. How many non-zero vectors of the lattice \mathbb{Z}^n does it contain?
- 6. Let L be a lattice of full rank in \mathbb{R}^n , and let $M \subset \mathbb{R}^n$ be a set such that $\operatorname{vol}(M) < \operatorname{covol}(L)$. Prove that there exists a point $\mathbf{x} \in \mathbb{R}^n$ such that the intersection $M \cap (L + \mathbf{x})$ is empty.

7. Let *L* be the integer lattice \mathbb{Z}^2 . Let $Q_{\epsilon} = \{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 \mid |x| < 1, |y| < 1 + \epsilon \}$, with $\epsilon \ge 0$.

(a) Show that for $\epsilon = 0$, the square Q_0 contains no non-zero lattice points; (b) Show that there exists $\epsilon > 0$ such that Q_{ϵ} contains precisely 2 non-zero lattice points.

8. Let *L* be the integer lattice \mathbb{Z}^2 . Let $B_{\epsilon} = \{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 \mid x^2 + y^2 < (1+\epsilon)^2 \}.$

(a) Show that for $\epsilon = 0$, the disk B_0 contains no non-zero lattice points; (b) Show that there exists $\epsilon > 0$ such that Q_{ϵ} contains precisely 4 non-zero lattice points.