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1 Introduction

Galois theory of differential equations attaches an algebraic group to
any linear differential system (over a differential field with an alge-
braically closed field of constants). Such a group provides algebraic
information on the differential system. Unfortunately, the calculation
of such a Galois group is quite complicated in general and we do not
have an effective algorithm to accomplish this task. We present here
an algorithm to calculate the Lie algebra of the Galois group, which
works when the system is absolutely irreducible. The algorithm is
being implemented in Maple.

1.1 A quick introduction to differential Galois theory

Let us consider the field k := C(x) of rational functions with complex
coefficients, equipped with the derivation ∂ := d

dx acting trivially on
C and such that ∂(x) = 1. We consider a linear differential system
associated with the matrix A in the ring Mn(k) of square matrix of
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order n, with entries in k:

[A] : ∂(Y ) = AY (1)

Definition 1 A Picard-Vessiot extension for the differential system (1)
is a field extension L/k, equipped with an extension of the derivation
∂, such that:

1. there exists U ∈ GLn(L), verifying ∂(U) = AU, whose entries
generate L over k;

2. the fields of constants L∂ of L is C.

An important point in the theory is that, when the field of constants is
algebraically closed, as in our case, a Picard-Vessiot extension always
exists. The differential Galois group G of ∂(y) = Ay is defined as

G := Gal∂(L/k) := {ϕ is a field automorphim of L/k, commuting to ∂}.

Any automorphism ϕ ∈ G sends U to another invertible matrix of
solutions of ∂y = Ay, so that U−1ϕ(U) ∈ GLn(C). This gives a
representation G → GLn(C) of G as a group of matrices. It turns out
that G coincide with (the C-points of) an algebraic group defined over
C. Notice that the choice of another invertible matrix of solutions leads
to a conjugated representation of G.

One can define a Galois correspondence among the intermediate
fields of L/k stable by ∂ and the linear algebraic subgroups ofG defined
over C: to each closed algebraic subgroup H of G, one associates the
field LH of elements stable by H; to each intermediate field M of
L/k, stable under ∂, one associates the group Gal∂(L/M). The relative
algebraic closure k̃ of k in L corresponds to the connected component
G0 of the identity, so that G0 = Gal∂(L/k̃). By definition, the Lie
algebra g of G is the tangent space to G, or to G0, at 1.
This is a sketch of an outline of difference Galois theory. For an

extended reference, see [8].
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1.2 The direct problem

The algebraic group G encodes a lot of information about the system
(1), as the many applications of differential Galois theory show. For
instance, the dimension of G as a variety over C is equal to the tran-
scendence degree of L/k (see [8, Corollary 1.30]). Another example
is the following: the connected component G0 of G is solvable if and
only if L/k is Liouvillian, that is L is obtained from k as a result of a
tower of extensions of the form K(u)/K such that either u is algebraic
over K , or ∂(u) ∈ K or ∂(u)/u ∈ K (see [8, §1.5]).
The examples above show the interest of being able to calculate the

differential Galois group of a differential system. The reader will also
notice that, in both examples, the information needed on G can be read
on G0 or on its Lie algebra g.

There exist some algorithms to calculate differential Galois groups.
For instance we can effectively calculate the Galois group of a differ-
ential system of rank 2, using Kovacic’s algorithm [6]. There are some
“theoretic” algorithms that do not make any assumption on the rank of
the system: [2], [4], [7], [3]. None of them is implemented.

2 Why calculating g rather than G?

2.1 Reduced forms

We denote k̄ the algebraic closure of k. Given A = (ai j) ∈ Mn(k̄), we
fix a basis α1, α2, . . . , αr ∈ k̄ of theC-vector space spanned by the ai j’s.
Then there exist M1, M2, . . . , Mr ∈ Mn(C) such that A =

∑r
h=1 αhMh.

The matrices M1, M2, . . . , Mr are a Wei-Norman decomposition of A.
We define Lie(A) as the smallest algebraic Lie sub-algebra of Mn(C)

containing M1, M2, . . . , Mr . The Lie algebra Lie(A) does not depend
on the choice of α1, α2, . . . , αr .

Theorem 1 (Kolchin-Kovacic, [8, Corollary 1.32]) For any differen-
tial system (1), we have the inclusion g ⊂ Lie(A). Moreover there exists
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P ∈ GLn(k̄) such that P[A] := ∂(P)P−1 + PAP−1 ∈ g(k̄)

The statement above is not very precise. Indeed, it is not g which
contains P[A], but a conjugated algebra of g. In fact, we are conjugating
the representation of g by changing the system. However the theorem
means that, up to conjugation, we have g ⊂ Lie(P[A]), and hence that
g = Lie(P[A]).

Definition 2 In the notation of the theorem above, we say that ∂Z =
P[A]Z is a reduced form of ∂Y = AY .

2.2 Characterization of reduced forms

A differential module M = (M,∇) over k is a finite dimensional k-
vector space M , say of dimension n, equipped with a C-linear map
∇ : M → M , such that ∇( f m) = ∂( f )m + f∇(m) for all f ∈ k and
m ∈ M . For any basis e of M over k, we have ∇(e) = e(−A), for some
A ∈ Mn(k). Hence an element m ∈ M , that is written as m = ey, for
some y ∈ kn, verifies ∇(m) = 0 if and only if ∂(y) = Ay. We say that
∂(y) = Ay is the differential system associated to M in the basis e.
If f is another basis of M such that e = f P, then a direct calculation
shows that ∇( f ) = f (−P[A]). This means that finding a reduced form
is equivalent to finding a convenient basis ofM over k.
We denote by Constr(M) an algebraic construction of M , i.e., a

vector space obtained from M by taking duals, tensor products, direct
sums and subquotients. Any such Constr(M) is endowed with a natural
action of ∇ (see [8, §2.2] for a detailed description of the action of ∇).
We denote by Constr(M) the corresponding differential module and
by ∂(y) = Constr(A)y the system associated to Constr(M) in the basis
induced by e.

Notice that, if x0 ∈ C is an ordinary point for ∂y = Ay, i.e., if
A does not have any pole at x0, then it is an ordinary point for any
∂y = Constr(A)y.
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Theorem 2 ([1]) In the notation above, let x0 be an ordinary point for
∂y = Ay. Then we have:

1. ∂Y = AY is in reduced form if and only if for all algebraic
construction Constr(M) and all vectors of solution y of ∂y =
Constr(A)y with coefficients in k, the vector y has its coefficients
in C.

2. If ∂y = AY is not a reduced form, then there exists a matrix
P ∈ GLn(k̄) such that ∂Z = P[A]Z is in reduced form and that
any solution y of ∂Y = Constr(A)Y with coefficients in k is sent
to its value y(x0) at x0 by the basis change associated to P.

The theorem above says that y(x0) is solution of ∂Y = P[Constr(A)]Y
and that P[Constr(A)] = Constr(P[A])

3 Some properties of g

In this paragraph, we are going to state some properties of g that we use
in the algorithm. The statements below are non trivial, but their proof
is beyond the scope of this short exposition.
Let L be a Picard-Vessiot extension for the system ∂y = Ay, asso-

ciated to a differential module M, in a fixed basis. The action of ∇
extends naturally to M ⊗k L, since L comes equipped with an extension
of ∂. We set V := (M ⊗k L)∇ := {m ∈ M ⊗k L : ∇(m) = 0}. By con-
struction of L, V is a C-vector space of dimension n and it is endowed
with an action of G. We have a representation G → GL(V), which
allows to see g as a sub-Lie algebra of End(V), invariant under the
adjoint action of G, namely G × End(V) → End(V), (g, ψ) 7→ gψg−1.
There exist two one-to-one correspondences between:

1. the subspaces of the algebraic constructions of V that are stable
by the action of G,
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2. the sub-differential modules of all the algebraic constructions of
M, i.e., all the sub-k-vector space of all the algebraic construc-
tions ofM that are stable by ∇.

They are defined by:

W 7→ (W ⊗C L)G, (N,∇) 7→ (N ⊗k L)∇,

and are inverse of each other. The action of ∇ on (W ⊗C L)G is defined
using the fact that W is a vector space of solution of a linear differential
system.
As we have pointed out, the Lie algebra g is a G-invariant sub-C-

vector space of End(V), hence gk := (g ⊗C L)G is a sub-Lie algebra of
End(M) �M ⊗M∗.1
The algorithm that we are presenting here, is articulated in two parts:

first it calculates gk and then deduces g from gk , constructing the matrix
P mentioned in Theorem 2. Indeed, gk is a sub-module ofM ⊗kM∗,
stable by ∇. Hence it is generated by some matrices Mi(x) ∈ Mn(k),
for i = 1, . . . , s. Then g will be generated by their values Mi(x0) in an
ordinary point x0.

4 The algorithm

The algorithm works under the following assumption: the differential
module M is absolutely irreducible, that is, the differential module
M ⊗k k̄ does not have any non trivial sub-differential module. This
ensures that g acts irreducibly on V and thatM ⊗kM∗ is a direct sum
of irreducible differential modules.
We also make the more innocent assumption, to whom one can

always reduce, that g is contained in sln(C), which implies that g is
semi-simple.
The algorithm proceeds as follow:

1The Lie algebra gk is nothing else than the Lie algebra introduced by N. Katz in [5].
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1. One decomposesM⊗kM∗ using the properties of the eigenring
(see [8, Proposition 2.40]). This boils down to finding the rational
solutions of a differential system of rank n4, which increases
considerably the complexity of the algorithm. Fortunately, there
are some canonical decompositions ofM ⊗kM∗ that allow, for
instance, to consider two differential systems of rank (n2−1)n2/2
and (n2 − 1)(n2 − 2)/2, rather than of rank n4. In spite of the
appearances, it is quite a gain since for n = 3 one has to solve
two systems of rank 36 and 28, which is already much faster than
solving a system of rank 81.

2. One has to select the pieces of the decomposition ofM ⊗k M∗
containing gk . This is done systematically, testing all the proper
submodules ofM ⊗k M∗. So, the algorithm selects a maximal
submodule gguess and it goes to the next step to test it.

3. The test consists in trying to find the matrix P. There are two
possibilities:
a) It can find P: it means that gk ⊂ gguess. Then it goes back

to step 2 and tests of all the proper maximal submodules
of gguess to see if it has to replace gguess by a smaller
candidate or if we have found gk and P, and therefore g.

b) It cannot find P: it means that gk 1 gguess, so it goes back
to step 2 and picks another candidate.
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