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1 General problem and main results

As the title suggests, this talk was concerned with asymptotic problems
on constrained k-almost primes, where k is a fixed positive integer.

A positive integer n is said to be k-almost prime if Ω(n) = k,
i.e. if n has precisely k prime factors counted with multiplicities (for
example 6 and 9 are both 2-almost prime). The constrained refers to the
fact that additional constraints will be considered on the prime factors
constituting the number n. As we shall see in the next section, the
motivation of constraining the prime factors of n comes from the two
main applications of this subject, namely cryptography and a problem
about the size of the coefficients of the cyclotomic polynomials.
For a positive real number x, define

π(x, k) := #{n 6 x : ω(n) = k}, N(x, k) := #{n 6 x : Ω(n) = k},

whereω(n) denotes the number of prime factors ofnwithout multiplic-
ity. By definition N(x, k) is precisely the number of k-almost prime
integers up to x. The two functions have the same order of magnitude,
which is established in a classical theorem of Landau [6].
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Theorem 1 (Landau, 1909). Let k be a fixed positive integer. Then,
asymptotically in x,

π(x, k) ∼ N(x, k) ∼ x

log(x)

(log log(x))k−1

(k − 1)!
.

We recall that given two functions A1(x) and A2(x) the notation
A1(x) ∼ A2(x) is a shorthand for

lim
x→∞

A1(x)

A2(x)
= 1.

The speaker stressed that this is only the easiest version of a broad
spectrum of results of Erdős, Sathe, Selberg, Hensley and Hildebrand-
Tenenbaum, valid on larger regions of the plane (x, k).

Clearly for k = 1 one recovers (a simple version of) the prime
number theorem, which in its cruder form states that the counting of
the number of primes up to x, i.e. π(x, 1), satisfies

π(x, 1) ∼ x

log(x)
.

With an eye towards applications, the rest of the talk has been focused
on the cases k = 2 and k = 3 with the constraints that we next explain.

1.1 Binary integer with prime factors within a given
factor

Fix r > 1 a real number. Denote by

Cr(x) := #{pq 6 x : p < q < rp}.

In words, this is the set of square-free 2-almost prime numbers, whose
2 distinct prime factor are within each other of a multiplicative factor at
most r. Decker and the author [1] dubbed these integers RSA-integers,
as integers with two prime factors of roughly the same size play an im-
portant role in the RSA cryptosystem. One of the two goals of the
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talk was to show recent results that the author obtained regarding the
asymptotic evaluation of Cr(x). In increasing precision of the asymp-
totic formula, one has:

Theorem 2 (Decker and Moree, [1]). As x tends to infinity we have

Cr(x) =
2x log log(r)

(log(x))2
+O

(rx log(er)

(log(x))3

)
.

Theorem 3 (Moree and Saad Eddin, [5]). For x > 2r and x tending
to infinity we have

Cr(x) =

∫ x

2r

log log(
√
rt)− log log(

√
t
r )

log(t)
+O(rxe−c1

√
log(x))

for some constant c1 > 0.

By partial integration one obtains from the latter result:

Theorem 4 (Moree and Saad Eddin [5]). Let r > 1 be an arbitrary
fixed real number and n > 2 be an arbitrary integer. As x tends to
infinity, we have

Cr(x) =

n−1∑
j=1

aj(r)
x

(log(x))k+1
+On

(x log(2r)2bn/2c+1 log(r)

(log(x))n+1

)
+O(rxe−c(ε)

√
log(x)).

Where c(ε) = (1 − ε)c/
√

2, for a constant c > 0 and 0 < ε < 1 is
arbitrary, and where

ak(r) :=

[ k+1
2

]∑
j=1

k!

(2j − 1)!

2 log(r)2j−1

2j − 1
.

Here [x] denotes the integral part of x and bxc its floor.
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1.2 Binary integers within a given factor and in a
given congruence

The results of this section are motivated by a recently observed bias in
the congruence of the two factors of a binary integer modulo 4. Namely
consider the counting function

s(x) :=
#{pq 6 x : p ≡ q ≡ 3 mod 4}

1
4#{pq 6 x}

.

One would obviously expect that numerical simulation should show
rather rapidly that s(x) approaches to 1. So it might be quite surprising
that one finds numerically that s(106) is roughly 1.183 and s(107) is
roughly 1.162. This suggested the presence of a large secondary term,
as indeed can be proved:

Theorem 5 (Dummit, Granville and Kisilevsky [2]).

s(x) = 1 +
β + o(1)

log log(x)
,

with β of order 0.334 up to the third decimal digit.

Clearly the theorem explains the above empirical bias, as
β/ log log(x) decreases immensely slowly to zero!

Given the cryptography-application of binary integers of the re-
stricted form discussed in the previous subsection called RSA-integers,
it is interesting to see if they display a similar bias. If so one might
perhaps be able to speed up cracking the RSA-system by assuming that
both prime factors are congruent to 3 modulo 4 first.
The result obtained is as follows:

Theorem 6 (Moree and Saad Eddin [5]). Let a1, d1, a2, d2 be natural
numbers with (a1, d1) = (a2, d2) = 1. Set

S(x) = {pq 6 x : p ≡ a1 mod d1, q ≡ a2 mod d2}.
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We then have:

#S(x)
1

φ(d1)φ(d2)
#{pq 6 x}

= 1 +Or
(
(log(x))2e−c(ε)

√
log(x)

)
.

Note that the error decreases very quickly to zero and thus there is
at most a very weak bias. In particular, there is no usable bias in the
RSA-integer case (with d1 = d2 = 4).

1.3 Ternary integers

Consider the constrained ternary problem of asymptotically estimating
the cardinality of

T (x)={pqr 6 x : 3 6 p < q < r <
p− 1

p− 2
(q−1), r ≡ q ≡ ±1 mod p}.

The speaker, together with a number of coauthors, obtained the
following result [4]:

Theorem 7 (Luca, Moree, Osburn, Saad Eddin and Sedunova, 2017).
We have that

#T (x) = C1
x

(log(x))2
+O

(x log log(x)

(log(x))3

)
,

where
C1 =

1

4

∑
l>3

1

l(l − 1)2
log
( l − 1

l − 2

)
,

with l running over all odd prime numbers.

2 Motivation and applications

2.1 Motivation

The security of the RSA system is based on the fact that (with classical
computers) it is considered difficult to factor RSA-integers in reasonable
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time. Thismotivated the speaker to estimate the number of such integers
up to x and to see how much of a bias there is when congruence
conditions are specified for the two prime factors.

2.2 Applications

Let n be a positive integer. Let ζn := e
2πi
n . Recall that the n-th

cyclotomic polynomial is defined as

Φn(T ) =
∏

16j6n,(j,n)=1

(x− ζjn).

We will look at its coefficients:

Φn(T ) :=

φ(n)∑
i=0

an(i)T i,

where φ(n) denotes Euler’s totient function. One defines the height of
Φn(T ) to be the largest value of |an(i)| as i ranges through{0, . . . , φ(n)}.

It is a known fact that A(n) = 1 whenever n is at most binary.
Then one has to look at at least ternary integers to see some non-trivial
behaviour.
It was proven by Bang, in 1895, thatA(pqr) 6 p−1, for p < q < r.

Therefore one has that maxq,r{A(pqr : p < q < r} exists; denote it
by M(p). It is the main open problem in the subject, to determine
a formula or an efficient algorithm to compute M(p). It has been
conjectured by a Sister, named Sister Beiter, that M(p) 6 p+1

2 . This
conjecture has been disproved by the speaker and Gallot in 2008 [3]
for all primes p. They proposed a corrected version of this conjecture,
by conjecturing thatM(p) 6 2

3p. They called this the corrected Beiter
conjecture. They were able to show that, given an ε > 0, the inequality
M(p) > (2/3− ε)p holds for all large enough p.

Using Theorem 7, the authors of [4] established the following result.
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Theorem 8 (Luca, Moree, Osburn, Saad Eddin and Sedunova (2017)).
The number T (x) of ternary n = pqr 6 x such that A(pqr) 6 2p

3
satisfies

T (x) >
(25

27
+ o(1)

)
π(x, 3) >

(25

27
+ o(1)

)x(log log(x))2

2 log(x)
.

This implies that a very big proportion of the ternary integers ≤ x,
namely at least 0.925 for all x large enough, respects the corrected
Beiter conjecture, that is

|apqr(i)| 6
2

3
p for each i ∈ {0, . . . , φ(pqr)}.
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