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Consider the Dwork family of quintic threefolds in P4

Xψ : x1 + x2 + x3 + x4 + x5 − 5ψx1x2x3x4x5 = 0 (1)

where ψ∈C is a parameter. The non singular member of the family are
Calabi-Yau varieties. Recall that a complex connected, compact Kähler
manifold X is called a Calabi-Yau variety if

(CY1) the canonical bundle is trivial

(CY2) there are no p-holomorphic forms for p , 0 , n, where n is the
complex dimension of X .

Smooth hypersurfaces of degree n + 1 in a n-dimensional projective
space are Calabi-Yau as consequence of adjunction and the Lefschetz
theorem. Elliptic curve and K3 surfaces are the only examples of
Calabi-Yau variety in dimension 1 and 2. It is not difficult to show that
if ψ is not a fifth root unity then Xψ is smooth and hence is a Calabi-Yau
threefold. Let

Pψ(x1, . . . , x5) = x1 + x2 + x3 + x4 + x5 − 5ψx1x2x3x4x5
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The Hodge diamond of Xψ looks a follows
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In particular H1(Xψ, C) = H5(Xψ, C) = 0 and H0(Xψ, C), H2(Xψ, C),
and H4(Xψ, C) are one dimensional.
Suppose that ψ ∈ Q then we can reduce modulo a prime p primes

not dividing its denominator; assume p > 5.For varieties over finite
fields an important quantity is the number of points

Np(Xψ) = #
{
P∈P4(Fp) | P∈Xψ

}
.

Then if we set

Ap =
∑

(x1, ..., x5)∈F
5
p

(
1 − Pψ(x1, . . . , x5)

p−1
)

(2)

we have that
Ap ≡ 1 − (p − 1)Np(Xψ) mod p

hence
Ap − 1 ≡ Np(Xψ) mod p.

A prime is called a good prime for Xψ if the reduction of Xψ mod p is
non singular. Nextwewant to introduce the generalized hypergeometric
functions. Let r and s be integers, and α1, . . . , αr, β1, . . . , βs be
rational number with all the −βi different from non-negative integers.
The generalized hypergeometric function is defined as the series

rFs

(
α1 · · · αr
β1 · · · βs

��t) == ∞∑
k=0

(α1)k . . . (αr )k
(β1)k . . . (βs)k

tk

k!
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where (x)k = x(x + 1) · · · (x + k − 1). We want to compute Ap mod p
in terms of truncated generalized hypergeometric function. First of all
recall that ∑

x∈F∗p

xa =

{
p − 1 if a ≡ 0 mod p
0 if a . 0 mod p

Expanding the polynomial in (2) and using the above relation it is not
hard to show that:

Ap ≡

bp/5c∑
m=0

(5m)!
m!5

( t
55

)m
mod p

where t = ψ−5. See [1, p. 38] for more details. On the right hand side
we have the truncatation of the generalized hypergeometric function:

∞∑
m=0

(5m)!
m!5

( t
55

)m
= 4F3

( 1
5

2
5

3
5

4
5

1 1 1
��t)

Another important aspect of this theory are the periods of Xψ. Recall
that, roughly speaking, a period on a k-dimensional variety (defined
overQ) is the value of the integral along a k-cycle (with some boundary
condition) of a k-differential form (for more about periods and their
relevance in arithmetic geometry see [2]). Note that (CY1) implies that
Xψ admits a nowhere-vanishing holomorphic 3-form ωψ, unique up to
scalar multiplication, which can be defined as:

ResXψ

(∑5
i=1(−1)ixidx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dx5

x1 + x2 + x3 + x4 + x5 − 5ψx1x2x3x4x5

)
Therefore the periods of Xψ, are the values of

∫
γ
ωψ where γ is a 3-

cycle. Moreover the dimension of H3(Xψ,C) = 204 which means there
are 204 periods of ωψ.

Consider the abelian subgroup of automorphisms

A := {(ζ1, ..., ζ5)|ζ5
i = 1, ζ1 · · · ζ5 = 1},
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acting by xi 7→ ζixi and let Vψ be the subspace of H3(Xψ, C) fixed
by A. It can be shown that the dimension of Vψ is 4.
There is also another way to compute the number of points of Xψ

mod p which is done via the Frobenius endomorphism and goes as
follows: For a good prime p, let Frobp denote the Frobenius morphism
on Xψ induced by the p-th power map x → xp. Let ` be a prime
different from p. Then the induced operator Frob∗p acts on the ` adic
étale cohomology groups Hi

et (Xψ,Q`). Let

Pp,i(T) := det(1 − T Frob∗p |H
i
et (Xψ,Q`)

be the characteristic polynomial of the endomorphism Frob∗p on the
étale `-adic cohomology group, where T is an indeterminate. By the
Lefschetz fixed point formula we have that

Np(Xψ) = # Fix(Frobp) =
∑
i

(−1)i Tr(Frob∗p |H
i
et (Xψ,Q`)).

Recall that we set t = ψ−5. If t → 1 (i.e. ψ → a root of unitiy), then
dimension of V I

ψ the fixed part of Vψ under the action of the inertia
group has dimension 3 and split as the direct sum of L and A, where L
has dimension 1 and A has dimension 2 and is associated to a modular
form f of weight 4 and level 125 (as proven by C. Schoen in [6]).
Moreover

Trace of Frobenius on V =
( p
5

)
p + ap,

where ap is the p − th coefficent of the modular form found by Schoen
and

( p
5
)
is the Legendre symbol. It follows that

bp/5c∑
m=0

(5m)!
m!5 5−5m ≡ ap mod p

Experimentally this congruence actually happens mod p3 (but only for
t = 1), which is rather surprising, and this fact has been given the name
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of supercongruence. One can find a few other examples of this kind
in [5] (for a recent proof see [3]).
Together with D. Roberts we have found a conjectural explanation

of this supercongruence phenomenon tying it to the gap in the Hodge
numbers of the limiting motive at t = 1. In our case this motive is that
of the modular form f , which being of weight 4 has Hodge numbers
(1, 0, 0, 1). The gap of 3 between the non-zero Hodge numbers should
explain the observed supercongruence to the power p3. Formore details
see [4].
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