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1 Ideal class groups

The ideal class group of a number field K , denoted ClK , is the quotient
of the fractional ideals of the integer ring OK by the the subgroup
of principal ideals. Its cardinality hK , called the class number of K ,
measures how far OK is from a principal ring, and is also a measure of
the obstruction to the uniqueness of a decomposition of an ideal into a
product of prime ideals.
The ideal class groups are quite simple to define but they are still

very mysterious. It is known that the class number of a number field K
is always finite and Minkowski’s bound permits to compute the class
group of a given field K . Despite this, most of the questions on infinite
families of fields are still open. For example, are there infinitely many
number fields K (up to isomorphism) with principal integer ring or, at
least, with hK bounded by a given number? Or can we show that there
are infinitely many number fields with cyclic class group, or even with
class group generated by, say, 2017 elements?
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Even if we are no able yet to give an answer to any of these questions,
we can point to some great advances in understanding variation of
class groups in towers. We must first quote Iwasawa’s formula, which
gives asymptotically the growth of the p-part of ideal class groups
in a Zp-extension. On the other hand, Cohen-Lenstra heuristics give
an overall approach to predicting the distributions of class groups in
certain situations; recent advances by Bhargava and his collaborators
have verified a growing body of Cohen-Lenstra type predictions.
One is quickly led to study ideal class groups one p-part at a time.

Let us fix notations for the rest of the paper. Let p > 2 be an odd prime
number; let K be a number field. We will denote by ClK the ideal class
group of K and by A(K) the p-Sylow subgroup of ClK , that we call
p-class group of K .

2 Average exponent

Throughout, we take p > 2 to be an odd prime. The structure theorem
of finite abelian groups says that every finite abelian p-group A can
be written as a product of cyclic p-groups: letting d = d(A) be the
dimension of the Fp-vector space A/pA, there exist d positive integers
a1 > . . . > ad such that

A ' Z/pa1Z × . . . × Z/pad(A)Z.

We recall that the exponent of A is defined as the maximal order pa1 of
its elements.
We then have:

|A| =
d(A)∏
i=1

pai .

Definition. The logarithmic average exponent of a finite p-group A is
given by

mA = logp(|A|
1/d(A)).
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In particular, it follows from this definition that logp |A| = mAd(A).

3 Towers of number fields

3.1 Abelian p-adic analytic extensions : Iwasawa’s formulas
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Let K be a number field and L |K a Zp-extension of
K , i.e. a Galois extension of K whose Galois group
is isomorphic to Zp. The closed subgroups of Zp are
exactly the groups pnZp for n > 0; hence for each such
n, there exists a unique subextension Kn |K of L |K of
degree pn.

Iwasawa’s formulas give the asymptotic behavior of the
p-rank and of the cardinality of the groups A(Kn):

Theorem. There exist µ, sµ, λ > 0 (depending on L) and ν ∈ Z such
that for all large enough n,

1. logp |A(Kn)| = µpn + λn + ν,

2. d(A(Kn)) = sµpn +O(1).

We can deduce from the second point that if µ is 0, then the p-rank
is bounded. It follows that mAn goes to infinity if µ = 0 and λ , 0.
This observation leads us to consider a particular Zp-extension.
Adjoining to the field K all the roots of unity with order a power of

p, we define a Galois extension K(µp∞)|K . We call cyclotomic Zp-
extension of K the unique subfield K∞ |K corresponding to the maximal
pro-p quotient of Gal(K(µp∞)|K)). This Zp-extension of K is wildly
ramified at least at one prime above p.
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Iwasawa conjectured that the invariant µ of the cyclotomic Zp-
extension of a number field would be 0 and proved it in the case where
K is Q. This theorem was extended by Ferrero and Washington for
abelian extensions of Q. The last conjecture we have to mention about
cyclotomic Zp-extensions is the following, due to Ralph Greenberg:

Conjecture. If K is totally real and if K∞ is the Zp-cyclotomic exten-
sion of K , then λ = µ = 0. In particular |A(K∞)|, d(A(K∞)) and mK∞

are bounded.

3.2 Class field towers : the unramified case

Let K be a number field and let S,T be two finite disjoint sets of
places of K . The compositum of all finite p-extensions of K unramified
outside S and totally split at the primes of T is still unramified outside
S and T-split: this is the maximal pro-p extension of K unramified
outside S and T-split. This extension that we denote by KT

S is Galois
(by maximality). Denote by GT

S (or GT
S (K)) its Galois group. Recall

that if S′ ⊂ S and T ⊂ T ′, we have KT ′

S′ ⊂ KT
S .

The study of the unramified case, where S and T are the empty set,
was first motivated by geometry: indeed G∅” = ”π1(SpecOK ). More-
over, the pro-p group G∅ is linked to the class group of K by class field
theory: Artin’s symbole gives and isomorphism between its abelian-
ized Gab

∅
and A(K) (we can see G∅ as a non-abelian generalisation of

A(K)). We denote by K1 and we call p-Hilbert of K the subfield of K∅
corresponding to Gab

∅
.
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For n > 2, let Kn be the Hilbert of Kn−1: Kn = (Kn−1)1. The tower
K ⊂ K1 ⊂ K2 ⊂ . . . is called Hilbert tower of K .

K∅

K2 = (K1)1

K1

K

A(K)

G∅

Remark. The question of the finiteness of Hilbert class field towers
had been discussed by Artin and Hasse in their correspondence. It
appears that Artin doubted the existence of an infinite Hilbert tower.

By construction, for every index n > 2, the intermediate Galois
group Gal(Kn |Kn−1) is isomorphic to the p-class group A(Kn−1) of the
field Kn−1. The Fontaine Mazur conjecture predicts that the p-rank of
A(Kn) goes to infinity. Is its growth due to the growths of both |A(Kn)|

andmA(Kn), or can we find some situations where the average exponent
is bounded?

The aim of this last part is to construct an example of an infinite
tower of unramified Galois extensions K ⊂ K1 ⊂ . . . such that mA(Kn)

remains bounded above. Recall that the average exponent mA(Kn) is
defined as the quotient logp(|A(Kn)|)/d(A(Kn)). This idea is then
simple: the first step is to make d(A(Kn)) grow as fast as possible, and
the second step is to find an upper bound for the numerator.
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3.2.1 Growth of the denominator

Let K ⊂ K1 ⊂ . . . ⊂ Kn ⊂ . . . ⊂ K∅ be an infinite tower of unramified
Galois extensions. For any n, the Galois group Hn of the extension
K∅ |Kn is a normal subgroup of G∅. We can first use the following
result from group theory to show that its p-rank grows at most linearly
with the degree of the extension Kn |K:

Proposition.For a pro-p group G and an open subgroup H,
d(H) − 1 6 [G : H](d(G) − 1), with equality if G is free.

Furthermore, Burnside’s basis theorem gives d(Hn) = d(Hab
n ) so we

have finally the following inequality for every n:

d(A(Kn)) − 1 6 [Kn : K](d(G∅) − 1).

The p-rank d(A(Kn)) can grow at most linearly with the index of Hn

in G∅. We now have to make sure that it will grow as fast as possible.
Genus theory (and a trick invented by Iwasawa) permits to find a tower
where d(A(Kn)) grows linearly in [Kn : K] (cf section 3.3).

3.2.2 A bound for the numerator of mAKn

By definition, |A(Kn)| is at most hKn . The well-known Brauer-Siegel
theorem gives an asymptotic relation between it and the discriminant
of Kn:

Theorem. (Brauer-Siegel) Let k be a field ranging over a sequence
K = (kn) of Galois extensions of Q such that the root discriminant
rdkn = |dkn |

1/[kn :Q] tends to infinity, where d(kn) is the discriminant of
the field kn.

Then B(K) = limn→+∞
log(hkn Rkn )

log(
√
|dKn |)

exists and is equal to 1.

Unfortunately, the root discriminant rdkn is constant in an infinite
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tower of unramified extensions soBrauer-Siegel’s theorem cannot apply
in our context. Instead, we will use one of its generalizations, due to
Tsfasman-Vladut:

Theorem[3]. If we do not assume the condition on rdkn , then B(K)
exists and is bounded by 1 + C, where C 6 0.1588. If K is totally
complex, we can take C = 1.0764.

By definition of A(Kn), we have :

logp(|A(Kn)|) 6 logp hKn = logp(hKn RKn ) − logp(RKn ).

Tsfasman-Vladut’s theorem gives an asymptotic bound of the first sum-
mand. It remains to minimize logp(RKn ), which we get via a fun-
damental result of Friedman giving an absolute lower bound for the
regulator of all numbers fields.

3.3 Example

Let k be a number field and let T = {p1, . . . , pt } be a finite set of prime
numbers. Let (kn) be a sequence of unramified extensions in which
every element of T splits, i.e. such that kn ⊂ kT

∅
for every n. Consider

the imaginary quadratic field K = k(
√
−p1 . . . pt ) and, for every n,

denote by Kn the compositum Kkn. In particular, as the extension
K |k is linearly disjoint of any unramified extension of k, the degrees
[Kn : K] and [kn : k] are equal.
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Under these hypothesis, for all n > 1, d(A(Kn)) is bounded from
below by t[kn : k] − 1. By section 3.2.1, we then know that d(A(Kn))

grows linearly with the degree of the extension Kn |K . Using what has
been done before, we obtain for the numerator the following:

logp(|A(Kn)|) 6 logp(hKn RKn ) − logp RKn

6 1.0765 logp(
√
|dKn |)

6 1.0765 logp(
√
|dK |)[Kn : K]

6 1.0765 logp(
√
|dK |)[kn : k]

6 1.0765 logp(
√
|dK |)

d(AKn )

t
.

Finally :

mA(Kn) =
logp(|A(Kn)|)

d(A(Kn))
6

1.0765 logp(
√
|dK |)

d(AKn )

t
d(A(Kn))

6
1.0765 logp(

√
|dK |)

t
.
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Remark. By using refined results of Tsfasman and Vladut, we are able
to create an example of an infinite unramified tower of p-extensions,
with p = 2, for which mA(Kn) 6 8, 858; it would be very interesting to
see how to refine such constructions further to make mA(Kn) as small
as possible.
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