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The functional equation for the Riemann zeta-function ζ (s), i.e.
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can be derived noticing that
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where the function ω(x) =
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A similar approach can be adapted to obtain the Davenport-Chowla
identity [2], [3], [4],

∞∑
n=1

λ(n)
n

ψ(nx) = −
1
π

∞∑
n=1

sin 2πn2x
n2 , (1)

55



where ψ(x) = − 1
π

∑∞
n=1

sin 2πnx
n is the saw-tooth Fourier series and

λ(n) = (−1)Ω(n) is the Liouville function, whose associated Dirichlet
series is
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ns
=
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ζ (s)

, σ = <(s) > 1 .

In (1), on the one hand, there appears λ(n) which is a prime number-
theoretic entity and, on the other hand, a Riemann’s example of a
nowhere differentiable function, ψ(x). The integrated identity can be
derived from the functional equation only, but to differentiate it one
needs the estimate for the error term for the Liouville function which
is as deep as the PNT:∑

n≤x

λ(n) = O(xe−c log3/5 x(log log x)−1/5
) .

The right-hand side of (1) may be viewed as the imaginary part of
the integrated theta-series, so the theta-transformation formula and the
functional equation are equivalent. It seems that the uniform conver-
gence of the left-side and the differentiability of the right-side merge
as the limiting behavior of a sort of modular function and the Riemann
zeta-function, which is modular-function-related.
To establish the Davenport-Chowla identity (1), we need to prove

the integrated form by the functional equation and then differentiate.
In order to establish an identity in general, we are to integrate it and
then differentiate the resulting integral form (or differencing) to deduce
it: this is the Abel-Tauber process. It is best known when applied
to series. The Riesz sum and its differencing, proving the integrated
identity and then differentiating it to obtain the desired identity, the
radial integration and radial limits etc. may all be thought of as an
Abel-Tauber process. We recall Perron’s formula
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where the left-hand side sum is called the Riesz sum of order < and
ϕ(s) =

∑∞
k=1

αk

ks , see [6].
Defining Θ(z) = θ(−iz) =
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formula now reads
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From [1] we have the following:
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where S(p, q) indicates the quadratic Gauss sum defined for b ∈ N by
S(b, a) =

∑b−1
j=0 e2πi j2 a

b .

The classical Gauss’ quadratic reciprocity law claims whether p is
a quadratic residue or non-residue modulo q once q is a quadratic
residue or non-residue modulo p is known: but this is not a priori clear.
It seems that this is one of the avatars of the symmetry associated with
the zeta-functions, i.e. with the functional equation. In our case, we
generalize to the following:

Theorem 2.
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Corollary 1.
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There are many generalizations of the Dedekind eta-function as a
Lambert series. Lerch [8] in 1904 introduced the cotangent zeta-
function for algebraic irrational z and odd positive integers s as
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.

Recently, Lalín et al. [7] considered the secant zeta function

ψ(z, s) =
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n=1

sec(nπz)
ns

and found its special values at some particular quadratic irrational
arguments. The main result of Lalín et al [7, Theorem 3] concerns the
difference
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which can be expressed in terms of Bernoulli and Euler numbers.
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In [5] we generalized those results. Defining
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This Theorem involves the sum of D∗(V1) and D∗(V2), which is the
genesis of the transformation formula of Lalin et al. [7, Theorem 3],
(2), for the secant zeta function. Differently from (2), the result is to
be the sum rather than the difference. The oddness of the integer l − 1
gives a disguised form to the formula. As can be seen in the proof
given in the paper [5], 2A∗

(
α, s, 1

2, 0
)
on the left side and the sum of

secant zeta-functions on the right naturally cancel each other. Since
this occurs only in such a pairing, this elucidates the hidden structure
of the paired transformation formula from a more general standpoint.
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