

Leo Murata Relations among arithmetical functions, sum of digits functions and paper-folding sequences

written by Comlan Edmond Koudjinan

1 Introduction

In the field of arithmetical function, we sometimes come across an interesting phenomenon, for example, the difference function of "the sum of digits function for Reflected Binary Code (RBC)", $\{S_{RBC}(n) - S_{RBC}(n-1)\}_{n=1}^{\infty}$, coincides with the regular paper-folding sequence. Here we talk about a generalization of this phenomenon and describe about some relations among the sum of digits functions, automatic sequences and some code systems. This is a survey of the papers [2] and [3], and as for the proofs please refer to these references.

2 An example

2.1 Reflected Binary Code (RBC)

We set

• S_{RBC} is the sum of digits function for RBC

•
$$\Delta(n) \coloneqq S_{RBC}(n) - S_{RBC}(n-1)$$
, for any positive integer *n*.

Then

n	Usual Binary Code	RBC	$S_{RBC}(n)$	$\Delta(n)$
0	0	0	0	
1	1	1	1	+1
2	10	11	2	+1
3	11	10	1	-1
4	100	110	2	+1
5	101	111	3	+1
6	110	101	2	-1
7	111	100	1	-1
8	1000	1100	2	+1
9	1001	1101	3	+1
10	1010	1111	4	+1
÷	÷	÷	:	÷

We would like to point out that

⊙ RBC is a permutation of Binary Code (BC).

 \odot RBC is a "Gray Code ": RBC for n + 1 and RBC for n differ by exactly one digit. Thus

$$\forall n \in \mathbb{N}, |\Delta(n)| = 1$$

2.2 Regular paper-folding sequence

We fold a paper to the same direction (counter-clockwise). Then we get folds "V-type" or " $\Lambda-type$ " progressively. Mathematically, we start from the simple sequence

$$\mathfrak{b}_0 = \{1, 1, 1, 1, \dots\}$$

with $b_n = 1, \forall n \in \mathbb{N}$ and then we construct the sequence \mathcal{P}_{b_0} , which we call the regular paper-folding sequence as follows

$$\mathcal{P}_{\mathfrak{b}_0} = \{\mathbf{1}, \mathbf{1}, -1, \mathbf{1}, 1, -1, -1, \mathbf{1}\}$$

Thus one has

Theorem 1 ([2]).

$$\forall n \in \mathbb{N}, \Delta(n) = \mathcal{P}_{\mathfrak{b}_0}(n).$$

More generally, if

$$\mathfrak{b} := \{b_1, b_2, b_3, \dots\}$$
 with $b_1 = 1$ and $b_i = \pm 1$ for $i \ge 2$

Then, as before, we get the generalized paper-folding sequence \mathcal{P}_{b}

$$\mathcal{P}_{b} = \{\mathbf{b_{1}}, \mathbf{b_{2}}, -b_{1}, \mathbf{b_{3}}, b_{1}, -b_{2}, -b_{2}, \mathbf{b_{4}}, \cdots \}$$

Thus it is natural to ask ourselves

Question 2. Is there a corresponding code C such that

$$\{S_C(n) - S_C(n-1)\}_{n=1}^{\infty} = \{\mathcal{P}_{\mathfrak{b}}(n)\}_{n=1}^{\infty} ?$$

The answer is given below.

3 Arithmetical function and sum of digits function

Let go back to the RBC and let define the function

$$\xi_{RBC} \colon \mathbb{R}_+ \to \mathbb{N} \cup \{\infty\}$$
$$x \mapsto \sum_{0 \le n \le x} \chi_4(n)$$

where χ_4 is the Dirichlet character modulo 4:

$$\chi_4 \colon \mathbb{N} \cup \{\infty\} \to \mathbb{C} \text{ such that } \chi_4(n) = \begin{cases} 0 & \text{if } n \equiv 0, 2 \mod 4\\ 1 & \text{if } n \equiv 1 \mod 4\\ -1 & \text{if } n \equiv 3 \mod 4 \end{cases}$$

Then one has ([2])

$$S_{RBC}(n) = \sum_{k=0}^{\infty} \xi_{RBC}\left(\frac{n}{2^k}\right).$$

This expression could be useful in the study of sum of digits functions.

Remark 3. For the case of BC, setting

$$f(n) := \begin{cases} 0 & if \ n = 0\\ (-1)^{n-1} & if \ n \ge 1 \end{cases}$$

And

$$\xi_{BC}(x) \coloneqq \sum_{0 \le n \le x} f(n)$$

Then one has ([2])

$$S_{BC}(n) = \sum_{k=0}^{\infty} \xi_{BC}\left(\frac{n}{2^k}\right).$$

From this expression, one can derive the excellent result on the average of S_{BC} due to H. Delange (1975).

In order to answer question 2, let give a structure of RBC

In RBC 0110 is the "unit" and this unit comes from $\xi_{RBC}(x)$.

We repeat $\overline{\omega}$, $2\overline{\omega}$, $4\overline{\omega}$, \cdots as above and then, reading vertically, we get the code RBC(n).

Taking into account of the generalization of b_0 to b, we can construct by the same way a new code C_b as follows: If

$$b = \{b_1, b_2, b_3, \dots\}$$
 with $b_1 = 1$ and $b_i = \pm 1$ for $i \ge 2$

Then C_b is (reading vertically)

Thus one can show that C_b is a Gray code. Moreover we have:

Theorem 4 ([3]).

$$\{S_{C_{\mathfrak{b}}}(n) - S_{C_{\mathfrak{b}}}(n-1)\}_{n=1}^{\infty} = \{\mathcal{P}_{\mathfrak{b}}(n)\}_{n=1}^{\infty}$$

We remark that $\{\mathcal{P}_{\mathfrak{b}}(n)\}_{n=1}^{\infty}$ is an example of automatic sequences.

4 Some properties of the code C_b

In the case of BC:

$$BC(13) = 1011_{(\longrightarrow)}$$

Which means

$$1 \cdot 2^0 + 0 \cdot 2^1 + 1 \cdot 2^2 + 1 \cdot 2^3 = 13$$

i.e.

$$BC(n) = \beta_1 \beta_2 \beta_3 \cdots$$

if and only if

$$\sum_{k=1}^{\infty} \beta_k 2^{k-1} = n$$

Moreover, this relation give a bijection between $\{BC(n)\}_{n=1}^{\infty}$ and \mathbb{N} . We can prove a similar result for $C_{\mathfrak{b}}$. For this purpose, let define the function:

$$\mathcal{D}_{\mathfrak{b}} \colon \mathbb{N} \to \mathbb{Z}$$

Such that if

$$C_{\mathfrak{b}}(n) = \alpha_1 \alpha_2 \alpha_3 \cdots$$

Then

$$\mathcal{D}_{\mathfrak{b}}(n) \coloneqq \sum_{k=1}^{\infty} \alpha_k 2^{k-1}.$$

Thus we have the following result

Theorem 5 ([3]). Let $K \ge 2$ be an integer. If b is K-periodic then the function \mathcal{D}_b is a bijection between $\mathbb{N} \cup \{0\}$ and \mathbb{Z} .

Remark 6. If K = 1 then $b = b_0$ and in this case \mathcal{D}_{b_0} is a bijection from $\mathbb{N} \cup \{0\}$ onto itself.

In 2, we remarked that:

$$f(n) = \begin{cases} 0 & \text{if } n = 0\\ (-1)^{n-1} & \text{if } n \ge 1 \end{cases} \rightsquigarrow \xi_{BC}(x) \rightsquigarrow \sum_{k=0}^{\infty} \xi_{BC}\left(\frac{n}{2^k}\right) = S_{BC}(n) \\ \chi_4(n) \rightsquigarrow \xi_{RBC}(x) \rightsquigarrow \sum_{k=0}^{\infty} \xi_{RBC}\left(\frac{n}{2^k}\right) = S_{RBC}(n) \end{cases}$$

Then

Question 7. What is the arithmetical function g(n) which induces $g(n) \rightsquigarrow \xi_g(x) \rightsquigarrow \sum_{k=0}^{\infty} \xi_g(n/2^k) = S_{C_b}(n)$?

To this question, we have the answer which is as follows. Let $p \ge 2$ and

 $\mathcal{A} = \{g : \mathbb{N} \cup \{\infty\} \to \mathbb{C} \text{ with } g(0) = 0\}$ a set of arithmetical functions.

For $g \in \mathcal{A}$, we define the maps

$$\xi_g \colon \mathbb{R}_+ \to \mathbb{C}, x \mapsto \sum_{0 \le n \le x} g(n).$$

And then, we define the maps Φ_p and Ψ_p as follows: $\forall (g, n) \in \mathcal{A} \times \mathbb{N}$,

$$\Phi_p(g)(n) = \sum_{k=0}^{\infty} \xi_g\left(\frac{n}{p^k}\right)$$

$$\Psi_p(g)(n) = \begin{cases} 0 & \text{if } n = 0\\ g(n) - g(n-1) - \left(g\left(\frac{n}{p}\right) - g\left(\frac{n}{p} - 1\right)\right) & \text{if } n \ge p \text{ and } n \equiv 0 \mod p\\ g(n) - g(n-1) & \text{otherwise} \end{cases}$$

Then we have:

Theorem 8 (Kamiya-Murata [2]). Φ_p and Ψ_p are bijections from \mathcal{A} onto itself and $\Phi_p^{-1} = \Psi_p$.

This implies in particular:

$$f \xleftarrow{\Phi_2}{\Psi_2} S_{BC}$$
$$\chi_4 \xleftarrow{\Phi_2}{\Psi_2} S_{RBC}$$

And assuming b *K*-periodic then $\exists f_{b} \in \mathcal{A}$ such that

$$f_{\mathfrak{b}} \xleftarrow{\Phi_{2K}}{\Psi_{2K}} S_{C_{\mathfrak{b}}}$$

Moreover, we can calculate f_{b} as follows:

$$f_{\mathfrak{b}}(n) = \sum_{k=1}^{K} b_k f_0\left(\frac{n}{2^{k-1}}\right)$$

Where

$$f_0(x) \coloneqq \begin{cases} \chi_4(x) & \text{if } x \in \mathbb{Z} \\ 0 & \text{otherwise} \end{cases}$$

The function f_{b} is a 2^{K+1} -periodic function. The following diagram summarize this last case:

Theorem 9. If \mathfrak{b} , K, $C_{\mathfrak{b}}(n)$ and $S_{C_{\mathfrak{b}}}(n)$ are as above then:

$$\frac{1}{N} \sum_{n=0}^{N-1} S_{C_b}(n) = \frac{1}{2\log 2^K} \sum_{k=1}^K b_k \log N + F\left(\frac{\log N}{\log 2^K}\right).$$

Where F is 1–*periodic function, continuous, nowhere differentiable. Moreover, F admits a Fourier expansion:*

$$F(x) = \sum_{k \in \mathbb{Z}} D_k e^{2\pi i k x}$$

With

$$D_{k} = \begin{cases} \left(\frac{1}{2} - \frac{1}{\log 2^{K}}\right) L(0, f_{b}) + \frac{L'(0, f_{b})}{\log 2^{K}} & \text{if } k = 0\\ \\ \frac{L\left(\frac{2\pi i k}{\log 2^{K}, f_{b}}\right)}{2\pi i k \left(\frac{2\pi i k}{\log 2^{K}} + 1\right)} & \text{if } k \neq 0 \end{cases}$$

Where $L(s, f_b)$ is the Dirichlet series with coefficient $f_b(n)$. This is a generalization of Delange's result in [1].

References

- [1] H. DELANGE Sur la function sommatoire de la function "somme des chiffres", L'Enseignement Math., 21, (1975), 31-47.
- [2] Y. KAMIYA and L. MURATA Relations among arithmetical functions, automatic sequences, and sum of digits functions induced by certain Gray codes, Journal de Theorie des Nombres de Bordeaux, 24 (2012), 307-337.
- [3] Y. KAMIYA and L. MURATA Certain codes related to generalized paperfolding sequences, Journal de Theorie des Nombres de Bordeaux, 27 (2015), 149-169.

Comlan Edmond Koudjinan Department of Mathematics Università degli studi Roma Tre L.go S. L. Murialdo, n. 1 00146 Roma, Italy. email: ckoudjinan@mat.uniroma3.it