

Christian Maire On the growth of the *p*-ranks of the Class groups in *p*-adic analytic Lie extensions

Written by Pierfrancesco Carlucci

1 Introduction

Let *p* be a prime, **K** a number field, and let $\mathbf{K}_{\infty}/\mathbf{K}$ be a \mathbb{Z}_p -extension. Iwasawa showed (cfr. [6]) that the size of the μ -invariant is related to the rate of growth of *p*-ranks of *p*-class groups in the tower

 $K\subset K_1\subset K_2\subset ...\subset K_\infty.$

He showed in 1958 that the vanishing of the μ -invariant for cyclotomic \mathbb{Z}_p -extensions of the rationals is equivalent to certain congruences between Bernoulli numbers and he conjectured that $\mu = 0$ for these extensions. This was verified in 1979 for base fields **K** which are abelian over \mathbb{Q} by Ferrero and Washington (cfr. [1]) but it remains an unresolved problem for more general base fields. Iwasawa initially conjectured that his μ -invariant vanishes for all \mathbb{Z}_p -extensions, but later, in 1973, he was the first to construct \mathbb{Z}_p -extensions with arbitrarily large μ -invariants (cfr. [3]). As a natural development of this branch of algebraic number theory, Maire's work investigates about the other *p*-adic Galois groups enjoying the aforesaid property (see [4]).

2 The classical case

Let us start by recalling the main constructions in the simplest case, see [3] or [6]. For $n \ge 1$, let $\mathbf{K}_n = \mathbb{Q}(\zeta_{p^n})$ where ζ_{p^n} is a primitive $p^n - th$ root of unity. As customary we set

$$\mathbf{K}_{\infty} = \bigcup_{n=1}^{\infty} \mathbf{K}_n$$

Now, for p > 2, Gal ($\mathbf{K}_{\infty}/\mathbb{Q}$) is isomorphic to \mathbb{Z}_{p}^{\times} and \mathbb{Z}_{p}^{\times} is isomorphic to $(\mathbb{Z}/p\mathbb{Z})^{\times} \times \mathbb{Z}_{p}$ (for p = 2, Gal ($\mathbf{K}_{\infty}/\mathbb{Q}$) isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}/2\mathbb{Z}$). Therefore the fixed field of $(\mathbb{Z}/p\mathbb{Z})^{\times}$ as Galois group (over \mathbb{Q}) isomorphic to \mathbb{Z}_{p} . We call this field \mathbb{Q}_{∞} . The extension $\mathbb{Q}_{\infty}/\mathbb{Q}$ is an archetype for \mathbb{Z}_{p} -extensions, i.e. extensions whose Galois group is isomorphich to \mathbb{Z}_{p} . As shown in [6, Chapter 7] one can find a chain of subfields of \mathbb{Q}_{∞} :

$$\mathbb{Q} = \mathbf{F}_0 \subset \mathbf{F}_1 \subset \cdots \subset \bigcup_{n \ge 0} \mathbf{F}_n = \mathbb{Q}_{\infty}$$

with

Gal
$$(\mathbf{F}_n/\mathbb{Q}) \simeq \mathbb{Z}/p^n\mathbb{Z}.$$

Iwasawa's theorem can then be stated as follows:

Theorem (Iwasawa). Let \mathbb{Q}_{∞} and \mathbf{F}_n be as above. Let p^{e_n} be the exact power of p dividing the class number of \mathbf{F}_n . Then there exist integers $\lambda \ge 0$, $\mu \ge 0$, and ν , all independent of n, and an integer n_0 such that

$$e_n = \lambda n + \mu p^n + \nu$$

for all $n \ge n_0$

Sketch of proof. We give a brief outline of the proof following [6, section 13.3]. Let $\Gamma = \text{Gal}(\mathbb{Q}_{\infty}/\mathbb{Q}) \simeq \mathbb{Z}_p$. Denote by \mathbf{L}_n the maximal unramified abelian *p*-extension of \mathbf{F}_n . Note that \mathbf{L}_n is Galois over \mathbf{F}_n (being maximal). It follows that $X_n \simeq \text{Gal}(\mathbf{L}_n/\mathbf{F}_n)$ is isomorphic to the *p*-Sylow subgroup of the ideal class group of \mathbf{F}_n , which we call A_n . Set

$$\mathbf{L} = \bigcup_{n \ge 0} \mathbf{L}_n$$
 and $X = \operatorname{Gal}\left(\mathbf{L}/\mathbb{Q}_{\infty}\right)$.

Note that **L** is also Galois extension of \mathbb{Q} , and so we set $G = \text{Gal}(\mathbf{L}/\mathbb{Q})$. The idea is to made *X* into a Γ -module and hence a $\Lambda := \mathbb{Z}_p[[T]]$ -module. Then one can show that actually *X* is finitely generated and Λ -torsion. Hence it can be shown that *X* sits inside an exact sequence of Λ -modules of the form

$$0 \to A \to X \to \left(\bigoplus_{i=1}^{s} \Lambda/(p^{n_i})\right) \oplus \left(\bigoplus_{j=1}^{t} \Lambda/(f_j(T))^{m_j}\right) \to B \to 0,$$

where *A* and *B* are finite Λ -modules and each f_j is an irreducible polynomial which is also distinguished (i.e. a monic polynomial whose coefficients, except for the leading coefficient, are all divisible by *p*). It is not difficult to calculate what happens at the *n*-th level for modules of the form $\Lambda/(p^n)$ and $\Lambda/(f(T))^m$. One then concludes the proof by transfering back the result to *X*.

3 Uniform pro-*p* group

Let Γ be an analytic pro-*p* group: we can think of Γ as a closed subgroup of $\operatorname{GL}_m(\mathbb{Z}_p)$ for a certain integer *m*. If $p \ge 3$ we say that Γ is powerful if $[\Gamma, \Gamma] \subset \Gamma^p$ ($[\Gamma, \Gamma] \subset \Gamma^4$ in the case p = 2). A powerful pro-*p* group Γ is said uniform if it has no torsion.

The first task is to define $\mathbb{Z}_p[[\Gamma]]$ and this is done by setting $\mathbb{Z}_p[[\Gamma]] := \lim_{t \to U} \mathbb{Z}_p[[\Gamma/U]]$, where *U* runs over the open normal subgroups of Γ . Then we set $\Omega := \mathbb{Z}_p[[\Gamma]]/(p)$, and since the rings Ω and $\mathbb{Z}_p[[\Gamma]]$ are local, noetherian and without zero divisor ([2]) each of them has a fractional skew field. Call $Q(\Omega)$ the fractional skew field of Ω . Now if X is a finitely generated $\mathbb{Z}_p[[\Gamma]]$ -module, we define $\operatorname{rk}_{\Omega}(X)$ to be the $Q(\Omega)$ -dimension of $X \otimes_{\Omega} Q(\Omega)$.

Finally we set:

$$\mu(\mathcal{X}) = \sum_{i \ge 0} \mathrm{rk}_{\Omega}\left(\mathcal{X}[p^{i+1}]/\mathcal{X}[p^{i}]\right),$$

where $X[p^i]$ is the submodule of the elements of X killed by p^i .

Let \mathbf{L}/\mathbf{K} be a uniform *p*-extension: \mathbf{L}/\mathbf{K} is a normal extension whose Galois group $\Gamma := \text{Gal}(\mathbf{L}/\mathbf{K})$ is a uniform pro-*p* group. We assume furthermore that the set of places of **K** that are ramified in \mathbf{L}/\mathbf{K} is finite.

Let \mathbf{F}/\mathbf{K} be a finite subextension of \mathbf{L}/\mathbf{K} . We denote by $A(\mathbf{F})$ the *p*-Sylow subgroup of the class group of \mathbf{F} and put

$$\mathcal{X}_{\mathbf{L}/\mathbf{K}} := \varprojlim_{\mathbf{F}} A(\mathbf{F}),$$

where the limit is taken over all number fields **F** in **L**/**K** with respect the norm map. We have that $X_{L/K}$ is a finitely generated $\mathbb{Z}_p[[\Gamma]]$ module and hence we can associate as above its μ -invariant which is a generalization of the classical μ -invariant introduced by Iwasawa in the particular case $\Gamma = \mathbb{Z}_p$. Set $\mu_{L/K} := \mu(X_{L/K})$. A first interesting result about μ for this module was proven by Perbet in [5]:

Theorem. For $n \gg 0$ one has:

$$\log |A(\mathbf{K}_n)/p^n| = \mu_{\mathbf{L}/\mathbf{K}} p^{dn} \log p + O(np^{d(n-1)}),$$

where *d* is the dimension of Γ as an analytic variety.

We will say that a number field **K** is called *p*-rational if the Galois group of the maximal pro-*p*-extension of **K** unramified outside *p* is pro-*p* free. The crucial property of *p*-rational fields is, informally, that in terms of certain maximal *p*-extensions with restricted ramification, they behave especially well, almost as well as \mathbb{Q} .

The main result can be summarized as follows:

Theorem (Hajir-Maire). Let Γ be a uniform pro-p group having an automorphism τ of order m with fixed-point-free action, where $m \ge 3$ is co-prime to p. Assume \mathbf{F}_0 is a totally imaginary number field admitting a cyclic ex-

tension \mathbf{F}/\mathbf{F}_0 of degree m such that \mathbf{F} is p-rational. For any given integer μ_0 , there exists a cyclic degree p extension \mathbf{K}'

over $\mathbf{K}(\zeta_p)$ and a Γ -extension \mathbf{L}'/\mathbf{K}' of \mathbf{K}' whose μ -invariant verifies:

$$\mu_{\mathbf{L}'/\mathbf{K}'} \geq \mu_0.$$

If p is a regular prime and m is an odd divisor of p - 1 we can choose $\mathbf{F} = \mathbb{Q}(\zeta_{p^n})$ for any $n \ge 1$.

References

- B. Ferrero and L.C. Washington, *The Iwasawa invariant μ₁ vanishes for abelian number fields*, Annals of Mathematics. Second Series 109 (1979), no. 2, 377-395.
- [2] J.D. Dixon, M.P.F Du Sautoy, A. Mann and D. Segal, Analytic pro-p-groups, Cambridge studies in advances mathematics 61, Cambridge University Press, 1999.
- [3] K. Iwasawa, On the μ -invariants of \mathbb{Z}_{ℓ} -extensions, Number theory, algebraic geometry and commutative algebra, in honor of Yasuo Akizuki, pp. 1-11, Kinokuniya, Tokyo, 1973.
- [4] F. Hajir and C. Maire, *Prime decomposition and the Iwasawa* μ *-invariant*, 2016.
- [5] G. Perbet, Sur les invariants d'Iwasawa dans les extensions de Lie p-adiques (French) [On Iwasawa invariants in p-adic Lie extensions] Algebra Number Theory 5 (2011), no. 6, 819-848.

[6] L.C. Washington, *Introduction to Cyclotomic Fields*, Volume 83 of Graduate Texts in Mathematics, Springer-Verlag, 1982.

PIERFRANCESCO CARLUCCI Roma, Italy. email: pieffecar@libero.it