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1 Introduction

An elliptic curve is a projective algebraic curve of genus one with a
rational point. We recall that, if K is a number field and E is an
elliptic curve defined over K , the Mordell-Weil theorem asserts that the
(abelian) group E(K ) of K-rational points of E, is finitely generated;
it means that E(K ) ' E(K )tors × Z

r , where the nonnegative integer
r = rkK (E) is the rank of E(K ). Néron, in his thesis [8], generalized
this theorem to abelian varieties defined over a field K finitely generated
over its prime field and, subsequently, there were several other results of
this type. Non-expert readers can findmany texts and general references
on the theory: we recommend, among others, [11] and [6].
In this paper we consider families of elliptic curves given by an equation
of the kind

F : y2 = x3 + a2(t)x2 + a4(t)x + a6(t), (1)

where ai (t) ∈ Z[t]. In fact, for all but finitely many t ∈ Z, the
specialization F (t) of F is an elliptic curve over Q whose rank is
denoted by r (t). Moreover, we recall that the global root number
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ε(t) = ±1 of F (t) is the sign of the functional equation for the L-
series attached to F (t) (see, for example, [11, App. C.16] or [6,
Chap. 16 §3]), and the Birch and Swinnerton-Dyer Conjecture implies
(−1)r (t) = ε(t) (also called the parity conjecture; for a nice survey on
the subject and for the relations with the Tate-Shafarevich group, see
[4]).
We can also view (1) as a single elliptic curve over the rational function
field Q(t): we denote its rank rkQ(t) (F ) simply by r .
We define the average root number of the family (1) over Z, as the
following limit (if it exists)

Av(F ) = lim
X→∞

1
2X

∑
|t |<X

ε(t), (2)

(where we have set ε(t) := 0 if F (t) is not an elliptic curve) and it is
known that the average root number is zero and the average of r (t) is r or
r+1, for a large class of families of elliptic curves (see for example [5]);
we are instead more interested to find families F such that Av(F ) , 0
and Av(F ) , (−1)r , as better explained in Definition 1.1. Several
problems are related with this issue: e.g., for the distribution of zeros
of the L-functions L(s, F (t)) and the underlying “symmetry type” of
the family F , see [3] and the references therein.

Definition 1.1 Let F be a non-isotrivial family of elliptic curves given
by (1) with rank r over Q(t). We say that

(i) F is potentially parity-biased (or briefly potentially biased) over
Z if there is no place of multiplicative reduction except possibly
at∞;

(ii) F is parity-biased over Z if Av(F ) exists and is non-zero;

(iii) F has excess rank over Z if Av(F ) exists and Av(F ) = −(−1)r .

Obviously (iii) implies (ii) and from a conjecture of Helfgott, (ii)
would imply (i). In literature there are examples of parity-biased fam-
ilies with deg(ai (t)) quite large, but these families do not have excess
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rank over Z. Hence it is clear that to obtain parity-biased families or
with excess rank we need to control the rank r itself, the potentially
parity-biased condition and the root numbers ε(t) with their average.
In this paper we show some results obtained in this sense by S. Bet-
tin, C. David and C. Delaunay; for more details the reader can see
the work-in-progress paper [1]. In particular, Theorems 3.1 and 3.2
classify potentially parity-biased families (1) with deg ai (t) 6 2; then,
considering a particular family Fa given in (5), Theorem 3.3 gives a
formula for the root numbers in this family and Theorem 3.4 computes
their average Av(Fa). In the final part of the paper there are some
applications of these results in order to have parity-biased families and
families with excess rank.
We close the introductive section with the following well known

Example 1.2 For the Washington’s family of elliptic curves, given by

F1 : y2 = x3 + t x2 − (t + 3)x + 1, (3)

the rank over K (t) is one for every number field K (see [12, 2]).
Moreover, in [9] Rizzo shows that ε(t) = −1 for every t ∈ Z, and we
conclude that this family is parity biased but it does not have excess
rank over Z. We notify, finally, that the constant value ε(t) = −1 ∀t ∈ Z
no longer holds out from Z: for instance, ε(t) = 1 for many non integral
t ∈ Q.

2 The rank of a family of elliptic curves

Considering the elliptic curve F (t) from the family given in (1), we
define the trace of Frobenius at p of F (t), denoted by Trt (p), as

Trt (p) :=
{

p + 1 − |E(Fp) | if F (t) has good reduction at p,
0 otherwise ,

where Fp := Z/pZ and |E(Fp) | is the number of points in the reduced
curve, i.e. the cardinality of {(x, y) ∈ Z2 | y2 ≡ x3 + a2(t)x2 + a4(t)x +
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a6(t) mod p} (see [11, V.2]). Denoting the average value of the trace
by

Ap (F ) :=
1
p

p−1∑
t=0

Trt (p),

we can enounce the following

Conjecture 2.1 (Nagao) lim
X→∞

∑
p6X

−Ap (F ) · ln p = rkQ(t) (F ).

In [7] Nagao himself proved the conjecture for five family of elliptic
curves, and, as an application of some main results, Rosen and Tate
proved in [10] that Nagao Conjecture holds for rational surfaces, hence
a fortiori when deg ai (t) 6 2 in (1). Using this fact, for example, we
can state the following

Proposition 2.2 Let b, e ∈ Z such that b2 − 4e , 0 and consider the
following family

F ′ : y2 = x3 + t x2 + (−bt − 3b2 + 9e)x + et + b3 − 3eb.

Then r 6 1 and r = 1 if and only if b2 − 4e is ± a fourth power in
Z − {0}.

If b2 −4e = 0 then the curve F ′(t) is singular. To give an idea of the
proofwewrite x3+t x2+(−bt−3b2+9e)x+et+b3−3eb as B(x) ·t+C(x)
where B(x) = x2 − bx + e and C(x) = x3 + (−3b2 + 9e)x + b3 − 3eb.
Then we have

r = lim
X→∞

∑
p6X

ln p
p

p−1∑
x=0

p−1∑
t=0

(
B(x)t + C(x)

p

)
, (4)

where
(
∗
∗

)
is the Legendre symbol. In the last sum in (4), the contri-

bution will come from the zeros of B(x) modulo p. It has roots if and
only if the discriminant of B(x), i.e. b2 − 4e, is a square modulo p. If
b2 − 4e is not ± a fourth power, we obtain r < 1, so r = 0. If b2 − 4e is
± a fourth power, we obtain r = 1.
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3 Potentially biased and parity-biased families

If F is the family of elliptic curves given by the equation (1) with
deg ai (t) 6 2, to be “potentially parity-biased” is equivalent to the
condition

(∆(t) = 0) ⇒ (c4(t) = 0),

where∆(t) and c4(t) have the usual meaning for F (t) (see, for instance,
[11, III.1] or [6, 3 §3]).

Theorem 3.1 Let F be given by (1) a potentially biased family with
deg a2(t) = 1 and deg a4(t), deg a6(t) ≤ 2. Then r 6 1 and up to a
linear change of coordinates, F is one of the following

(i) F ′ : y2 = x3 + t x2 + (−at − 3a2 + 9b)x + bt + a3 − 3ab with
a, b ∈ Z; in this case, r = 1 if and only if a2 − 4b is ± a fourth
power in Z.

(ii) G : y2 = x3 +3dtx2 +3d2stx + d3st2 with d, s ∈ Z; in this case,
r = 1 if and only if s · d is a square in Z or −2 times a square.

(iii) H : y2 = x3 +3dtx2 +3d2stx + d3s2t with d, s ∈ Z; in this case
r = 0.

And what does it happen if, in the statement of the previous theorem,
we assume deg a2(t) = 2? In this case write a2(t) = ut2+vt+w, where
u, v,w ∈ Z.

Theorem 3.2 With such assumptions, up to a linear change of coordi-
nates, F will be one of the following families

(i) F ′(ut2 + vt + w), and in this case r 6 3.

(ii) H (ut2 + vt + w).

(iii) y2 = x3 + 2vt(−4t + 1)x2 + 4v2t(2t + 1)x − v3(4t2 + 3t + 1); in
this case r 6 1 and r = 1 if and only if v is −2 times a square.
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Now consider the equation of the family F ′ in Theorem 3.1 (i) with
b = 0; more precisely, if a2 − 4b is a square, there exists a change of
variables which transforms F ′ in the following

Fa : y2 = x3 + t x2 − a(3a + t)x + a3 (5)

(where a ∈ Z is not the same as before). For example, note that if we
pose fa (t) := t2 + 3at + 9a2, we easily find for Fa (t)

c4(t) = 16 fa (t), c6(t) = −32(3a + 2t) fa (t),

∆(t) = 16a2( fa (t))2,

and, in the special case a = 1, we recover the Washington’s family F1
given in (3).
As usual, we denote by vp (·) the p-adic exponential valuation and by
(·, ·) the gcd of two integers. Moreover, if M ∈ Z, let M0 be the odd
part of M , i.e. M = 2 v2 (M ) M0.

Theorem 3.3 Let εa (t) be the root number of Fa (t), then

εa (t) = − sa (t) (a0, t)

·
∏

p
����

a0
(a0, t )

(−1)1+vp (t)
(

p−vp (t)t
p

)1+vp (t)

mod 4,

where sa (t) ∈ {−1, 1} is explicit and depends only on a0 mod 8, v2(a)
mod 2, t0 or 2 v2 (a)t mod 8.

If q, a are two integers such that q |a, we define Av2(q, a) as the
average of sa (qt) when t varies with (t, q) = 1. Then, using Theorem
3.3, we get

Theorem 3.4 The following formula holds

Av(Fa) = −
1
|a |

∑
q | |a |

p
����
a0
q0
⇒ vp (q) odd

ϕ(|a/q |) χ4(q0) Av2(a, q),
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where χ4(q0) ∈ {−1, 1} is congruent to q0 mod 4 and Av2(a, q) ∈
{0, 1/2, 1}.

Note that, in particular, if a is square-free, then q = a is the only
divisor appearing in the previous sum, hence

Av(Fa) =



±1/a if a ≡ ∓1 mod 8
±1/(2a) if a ≡ ±3 mod 8

0 if a ≡ ±2 mod 8
.

The first consequence of Theorem 3.4 is the following corollary which
gives necessary and sufficient conditions for the family Fa to be parity-
biased.

Corollary 3.5 The family Fa is parity-biased if and only if v2(a) , 1.

4 Families with excess rank

In this section we preserve the above notations and we continue the
study to give some results and examples of families with excess rank.
First of all, from Theorem 3.3, if (a, b) = 1 we have

ea (at + b) = −
∏
p |a

−

(
b
p

)
,

and this means that

• if p ≡ ±1 mod 8 and b is not a square mod p, then Fp (pt + b)
has excess rank over Z , with r = 0;

• if p is an odd prime and p - b, then Fp2 (pt + b2) has excess rank
with r = 1.

To obtain families with higher rank we have to consider families of the
form Fa2 (ut2 + vt + w): in this case, the rank is 6 3.
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Definition 4.1 We set

Ha2,k (t) := Fa2 (t2 − 2at − a2 + k − a2(t2 + u2)/k).

The first thing to do for working with this family, is to write its
equation in the form

Ha2,k (t) : y2 = A(x)t2 + B(x)t + C(x)

for suitable polynomials A(x), B(x),C(x) ∈ Z[x] (recall (5)). For
example, for the first two of them we find

A(x) = −
a2 − k

k
x(x − a2), B(x) = −2ax(x − a2).

Going further with computations and working on the characteristics of
this family, we get results as the following

(a) We can take k ∈ Z such that−
a8

k
and−

ka8

(a2 − k)3 are not squares;

in this case r = 2.

(b) We can take k ∈ Z such that −
a8

k
or −

ka8

(a2 − k)3 is a square; then

r = 3.

For example, if we take a = 2 and k = 1, from (a) we obtain that the
family H4,1(t) has excess rank with r = 2. Instead, if we take p ≡ ±1
mod 8 and l ∈ Z with p - l we find thatHp2,−p2 (pt + l) has excess rank
with r = 3.

5 Twist of Washington family

We end the paper going back to the family in the Example 1.2: if
d ∈ Z − 0, the quadratic twist by d of Washington family (3) is

Ed,t : y2 = x3 + dtx2 − (t + 3)d2x + d3, (6)

which is in fact Fd (dt) (see (5)).
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Theorem 5.1 For v2(d) even the following hold

(i) If d0 ≡ ±1 mod 8, then ε(Ed,t ) ≡ −|d0 | mod 4.

(ii) If d0 ≡ 3 mod 8, then ε(Ed,t ) = sgn(d0) ⇐⇒ t ≡ 0, 1, 2
mod 4.

(iii) If d0 ≡ 5 mod 8, then ε(Ed,t ) = sgn(d0) ⇐⇒ t ≡ 1 mod 4.

For v2(d) odd, ε(Ed,t ) = sgn(d0) if and only if t ≡ 0, 3 mod 4.

The rank of Ed,t is always zero, unless d = ±1. If we set d = dt (u), the
generic point of Edt (u),t is (udt (u), dt (u)2) and Edt (u),t has rank > 1
over Q(t).

Proposition 5.2

(i) If u ≡ 1 mod 4, then ε(Edt (u),t ) = 1 if and only if dt (u) > 0.

(ii) If u ≡ 0 mod 4, then ε(Edt (u),t ) = 1 if and only if dt (u) < 0.
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