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1 Introduction

Let k ∈ Q, k , 0, d ≥ 3 a positive integer and consider an irre-
ducible bivariate form F (X,Y ) =

∑d
i=1 aiXd−iY i ∈ Z[X,Y ]. In 1908,

Axel Thue initiated the study of the Diophantine equations of the form
F (X,Y ) = k; this is the reason why they are called Thue Equations.
Thue obtained one fundamental theorem:

Theorem 1 (Thue 1908) Let F ∈ Z[X,Y ] be a homogeneous irreduci-
ble form of degree d ≥ 3:

F (X,Y ) = a0Xd + a1Xd−1Y + · · · + ad−1XY d−1 + adY d .

Let k ∈ Z, k , 0. Then there are only finitely many integer solutions
(X,Y ) ∈ Z × Z of the Diophantine equation F (X,Y ) = k.

Since then, the above theorem has been improved by many math-
ematicians. In this exoposition, we concentrate on the family con-
structed by E.Thomas, and later generalized by C. Levesque and M.
Waldschmidt. One of the first result in diophantine approximation is:
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Theorem 2 (Liouville’s inequality 1844) Let α be an algebraic num-
ber of degree d ≥ 2. There exists c(α) > 0 such that, for any p

q ∈ Q

with q > 0,
���α −

p
q

��� >
c(α)
qd
·

The inequality of Theorem 2 can be improved for algebraic numbers
α of degree d > 2. In fact the exponent d in the denominator is best
possible for d = 2 but it is not for d , 3. In 1909, Thue proved the
following theorem:

Theorem 3 (Thue 1909) Let α be an algebraic number of degree d >

2 and let κ > ( d2 ) + 1. Then there exists c(α, κ) > 0 such that, for any
p
q ∈ Q with q > 0,

���α −
p
q

��� >
c(α, κ)

qκ
·

Later, the exponent κ in the denominator above has been improved:

1921: C.L. Siegel, with κ = 2
√

d;

1947: F.J. Dyson and A.O. Gel’fond; with κ =
√

2d

1955: K.F. Roth, with any κ > 2.

There is a close relation between the finiteness of the number of so-
lutions of the Thue’s equation and approximation of rational numbers.
For example in [2] one can find the proof of the following:

Theorem 4 Let f ∈ Z[X] be an irreducible polynomial of degree d
and let F (X,Y ) = Y d f (X/Y ) be the associated homogeneous binary
form of degree d. Then the following two assertions are equivalent:
(i) For any k∈Z×, F (X,Y ) = k has only finitely many solutions in Z2

(ii) For any real number κ > 0 and for any root α ∈ C of f , there are
only finitely many rational numbers p

q such that

���α −
p
q

��� >
κ

qd
·
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Note that (i) can be rephrased as:
For any positive integer k , 0, the set of (X,Y ) ∈ Z2 verifying

0 < |F (X,Y ) | ≤ k .

is finite. Also, for any number field K , for any non-zero element k ∈ K
and for any elements α1, . . . , αn ∈ K with Card{α1, . . . , αn} ≥ 3, the
Thue equation

(X − α1Y ) · · · (X − αnY ) = k .

has only a finite number of solutions (X,Y ) ∈ Z × Z.
Now, one will describe some approach which has been used to deal
with Thue equations and discuss a further results related on it.

Theorem 5 (Schmidt’s Subspace Theorem 1970) Let L0,. . . , Lm−1
be m ≥ 2 independent linear forms in m variables with algebraic
coefficients. Let ε > 0. Then the set

{X = (X0, . . . , Xm−1) ∈ Zm : |L0(X ) · · · Lm−1(X ) | ≤ |X |−ε }.

is contained in the union of finitely many proper subspaces of Qm.

One can use the above theorem to prove the following celebrated result:

Theorem 6 (Thue, Siegel and Roth) For any real algebraic number
α, and for any ε > 0, there are only finitely many o p

q ∈ Q with q > 0
such that

���α −
p
q

��� <
1

q2+ε ·

In fact, the proof of Thue-Siegel-Roth Theorem can be used to produce
an upper bound of the number of solutions of a Diophantine equation
in the above family, but no upper bound for the sizes of solutions can
be derived. R. Baker and N. I. Fel’dman developed an effective method
introduced by A.O. Gel’fond, involving lower bounds for linear combi-
nations of logarithms of algebraic numbers with algebraic coefficients.
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Since ez − 1 ∼ z for z −→ 0, determining lower bounds for the follow-
ing two non-vanishing numbers is equivalent:

αb1
1 · · · α

bn
n − 1 b1 log α1 + · · · + bn log αn.

The first nontrivial lower bounds were obtained by A.O. Gel’fond. His
estimates were effective only for n = 2; for n ≥ 3, he needed to use
estimates related to the Thue-Siegel-Roth Theorem.
In 1968, A. Baker succeeded to extend to any n ≥ 2 the transcendence
method used by A.O. Gel’fond for n = 2. As a consequence, effective
upper bounds for the solutions of Thue’s equations have been derived.
In the same year, A. Schinzel computed explicitly the constants intro-
duced by A.O. Gel’fond in his lower bound for |αb1

1 αb2
2 − 1|.

The approach for solving Thue equations, given by Gel’fond and
Baker, is based on the exploitation of Siegel’s unit equation: as-
sume α1, α2, α3 are algebraic integers and X,Y rational integer such
that:(X − α1Y )(X − α2Y )(X − α3Y ) = 1. The elements u1 = X −
α1Y , u2 = X − α2Y , u3 = X − α3Y are units. By eliminating X and Y
in the three linear relations above, we obtain

u1(α2 − α3) + u2(α3 − α1) + u3(α1 − α2) = 0.

We write it as a Siegel’s unit equation in the form
u1(α2 − α3)
u2(α1 − α3)

− 1 =
u3(α2 − α1)
u2(α1 − α3)

·

By identifying, the quantity αb1
1 · · · α

bn
n in Gel’fond-Baker Diophantine

inequalitywith the quotient
u1(α2 − α3)
u2(α1 − α3)

·, one can then apply the theory
of Siegel’s unit equations.

2 Families of Thue equations

There are several families of Thue equations which many mathemati-
cians tried to solve. The first family of Thue equation was given by
Thue himself:

(a + 1)Xn − aY n = 1.
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For n prime and a sufficiently large in term of n (for instance, n = 3
and for a ≥ 386), the only one solution in positive integers X,Y is
X = Y = 1.
E. Thomas considered the family of the Thue equations Fn(x, y) = ±1
where Fn(X,Y ) = X3 − (n − 1)X2Y − (n + 2)X − Y 3. In 1990, he
proved in some effective way that the set of (X,Y, n) ∈ Z3 such that
n ≥ 0, max{|x |, |y |} ≥ 2, and Fn(x, y) = ±1 is finite. In [4] he
completely solved the equation Fn(X,Y ) = 1, for n ≥ 1.365 · 107; the
only solutions are (0,−1), (1, 0) and (−1, 1).

D. Shanks introduced the simplest cubic fields Q(λ) by studying the
field Q(ω) where ω is a solution of

Fn(X, 1) = X3 − (n − 1)X2 − (n + 2)X − 1. (1)

He proved that if λ is one of the solutions of equation (1), then Q(λ) is
a real Galois field.
In 1993, M. Mignotte [5] completed this result by solving this equa-

tion for each n. For n ≥ 4 and for n = 2, the only solutions to
Fn(X,Y ) = 1 are (0,−1) , (1, 0) and (−1, 1).
M. Mignotte worked with A. Lethö and F. Lemmermeyer. In 1996,
they studied, in [6], the family of Diophantine equations Fn(X,Y ) = k,
for k , 0. They obtained the following theorem,

Theorem 7 (Mignotte, Pethö and Lemmermeyer 1996) For n ≥ 2,
when X,Y are rational integers verifying

0 < |Fn(X,Y ) |≤ k (k ∈ Z)

then
log|y |< c(log n)(log n + log k).

with an effectively computable absolute constante c.

When k is a given positive integer, there exists an integer n0 depend-
ing upon k such that |Fn(X,Y ) |≤ k with n ≥ 0 and |Y |> 3√k implies
n ≤ n0. But, for 0 ≤|t |≤ 3√m, (−t, t) and (t,−t) are solutions, therefore
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the condition |Y |> 3√k cannot be omitted.
Note that Theorem 7 gives an upper bound for max{|x | , |y |} which
depends on k and n while we would like a bound only depending on k.
We now come to the main goal of this work: presenting Claude
Levesque and Michel Waldschmidt’ s approach for solving families of
diophantine Thue equation. In 2010, C. Levesque proposed to consider
the following version Thomas’s family of cubic Thue equations:

Fn,2(X,Y ) = (X − λ2
0nY )(X − λ2

1nY )(X − λ2
2nY ).

where λin are units in the totally real cubic field Q(λ0n). The natural
question was: Does Thomas result hold?
Given any irreducible binary form F ∈ Z[X,Y ], α a root of F (X, 1),
and ε a unit in the field Q(α), consider the family of Diophantine
equations, Fa (X,Y ) = k, (a ∈ Z), where Fa (X,Y ) is deduced from
F (X,Y ) =

∏d
i=1(X − σi (α)Y ), by twisting with εa, assuming Q(α) =

Q(αεa). Here Fa (X, 1) is the irreducible polynomial of αεa and

Fa (X,Y ) =
d∏
i=1

(X − σi (αεa)Y ).

By using Schmidt’s subspace theorem, their first result was: Given α to
be an algebraic number of degree d ≥ 3 and K=Q(α). Let ε be a unit
of K such that αε has degree d, fε (X ) be the irreducible polynomial of
αε and Fε (X,Y ) be its homogeneous version. Then for all but finitely
many of these units, the Thue equation Fε (X,Y ) = ±1 has only the
trivial solution X,Y in Z where XY = 0. Now, let consider

Fn,a (X,Y ) = (X − λa0nY )(X − λa1nY )(X − λa2nY ) ∈ Z[X,Y ].

with a new parameter a ∈ Z.

Q 1 Are there only finitelymany (n, a, X,Y ) satisfyingFn,a (X,Y )= ± 1?
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For the next result, we need the absolute logarithmic height h which is
defined by h(α) = 1

d log M (α) where M is the Malher measure

M (α) = a0
∏

1≤i≤d
max{1, |σi (α) |}

and a0 is the leading coefficient of the irreducible polynomial of α over
Z.

In 2013, C. Levesque and M. Waldschmidt stated the following con-
jecture in [3].

Conjecture 1 (Levesque and Waldschmidt 2013) There exists κ >

0, constant depending only on α, such that, for any k ≥ 2, all so-
lutions (X,Y, ε ) in Z × Z × Z×

k
of the inequality

|Fε (X,Y ) | ≤ k, with XY , 0 and [Q(αε ) : Q] = 3,

satisfy
max{|X |, |Y |, eh(αε ) } ≤ kκ .

One year later, they proved the following theorem which is one of the
main result presented here. The key point of the proof, is an approach
for finding the upper bound for the solution which does not depend on
n which we sketch below a complete proof can be found in [1].

Theorem 8 (Levesque and Waldschmidt 2014) There is an effective-
ly computable absolute constant c > 0 such that, if (X,Y, n, a) are
nonzero rational integers with max{|X | |Y |} ≥ 2 and Fn,a (x, y) = ±1,
then max{|a | |n|, |X | |X |} ≤ c. Furthermore, for all n ≥ 0, the trivial
solution with a ≤ 2 are (0, 1), (1, 0) and for a = 2 is (1, 1).

Proof. Let us write λi for λin for i = 0, 1, 2. Then

Fn(X,Y ) = X3 − (n − 1)X2Y − (n + 2)XY 2 − Y 2.

can be written as Fn(X,Y ) = (X − λ0Y )(X − λ1Y )(X − λ2Y )

so we have:



n + 1
n ≤ λ0 ≤ n + 2

n,

− 1
n+1 ≤ λ1 ≤ − 1

n+2,

−1 − 1
n ≤ λ2 ≤ −1 − 1

n+1 ·
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• One defines γi = X − λai Y , (i = 0, 1, 2), so Fn,a (X,Y ) = ±1
becomes γ0γ1γ2 = ±1. By writing γi to be γi0 , we have the
bound |γi0 | ≤

m
Y2λa0

. Also we have min{|γi1 |, |γi2 |} > Y |λa0 |.

• By considering the group of units of Q(λ0), and taking λ1, λ2 as
a base, there exist δ = ±1 and rational integers A and B which
verify

|A| + |B | ≤ κ
(

logY
log λ0

+ a
)
,

where,



γ0,a = δλA
0 λ

B
2 ,

γ1,a = δλA
1 λ

B
0 = δλ−A+B0 λ−A2 ,

γ2,a = δλA
2 λ

B
1 = δλ−B0 λA−B

2 .

• Transform the following Siegel unit equation,

γi0,a (λai1 − λ
a
i2

) + γi1,a (λai2 − λ
a
i0

) + γi2,a (λai0 − λ
a
i1

) = 0,

as
γi1,a (λai2 − λ

a
i0

)

γi2,a (λai1 − λ
a
i0

)
− 1 = −

γi0,a (λai100
− λai2 )

γi2,a (λai1 − λ
a
i0

)
·

we have the estimate

0 <
�����

γi1,a (λai2 − λ
a
i0

)

γi2,a (λai1 − λ
a
i0

)
− 1

�����
≤

2
Y 3λa0

·

At the end we have to separate two cases, first, when n is large, the
completion of the proof is from the lower bound for a linear form in
logarithms of algebraic numbers (Baker’s method).
For n bounded, we have results which are valid for the family of Thue
equations of Thomas and the completion of the proof follows from the
following Lemma,

Lemma 1 Consider a monic irreducible cubic polynomial f (X ) ∈
Z[X] with f (0) = ±1 and write,

F (X,Y ) = Y 3 f (X/Y ) = (X − ε1Y )(X − ε2Y )(X − ε3Y ).
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For a ∈ Z, a , 0, define

Fa (X,Y ) = (X − εa1Y )(X − εa2Y )(X − εa3Y ).

Then there exists an effectively computable constant κ > 0 depending
only on f , such that, for any k ≥ 2, any (x, y, a) in the set

{
(X,Y, a) ∈ Z2 × Z | XY a , 0,max{|X |, |Y |} ≥ 2, Fa (X,Y ) ≤ k

}

satisfies max{|X |, |Y |, e |a | } ≤ kκ . �

In 2015, further results were proved in [1]. The following is one of
those.

Theorem 9 (Levesque and Waldschmidt 2015) Let k ≥ 1. There ex-
ists an absolute effectively computable constant κ such that, if there
exists (n, a, k, X,Y ) ∈ Z2 with a , 0 verifying 0 < |Fn,a (X,Y ) | ≤ k,

• then
log{|X |, |Y |} ≤ κµ.

with µ =



(log k + |a | log|n|)(log|n|)2 log log|n| for |n| ≥ 3,
log k + |a | for |n| ≤ 2.

Note that if a = 1, this follows from Theorem 7.

• if n ≥ 0, a ≥ 1 and |y | ≥ 2 3√k, then a ≤ κµ′ with

µ′ =



(log k + log n)(log n) log log n for |n| ≥ 3,
1 + log k for n = 0, 1, 2.

• if XY , 0 and n ≥ 0 and a ≥ 1, then

a ≤ κ max
{

1, (1 + log |X |) log log(n + 3), log|Y |,
log k

log(n + 2)

}
.
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