Explicit Methods in Algebraic Number Theory

Amalia Pizarro Madariaga Instituto de Matemáticas Universidad de Valparaíso, Chile amalia.pizarro@uv.cl

1 Lecture 4 and 5

1.1 Dirichlet's Unit Theorem

Theorem 1.1. Let K be a number field of degree n over \mathbb{Q} with r_1 and r_2 the number of real and nonreal embedding over \mathbb{C} . Then there exist fundamental units $\varepsilon_1, \ldots \varepsilon_r$, with $r = r_1 + r_2 - 1$, such that every $\varepsilon \in \mathcal{O}_K^*$ can be written in a unique way by

$$\varepsilon = \zeta \varepsilon_1^{n_1} \cdot \varepsilon_r^{n_r}, \ n_i \in \mathbb{Z},$$

where ζ is a root of unity in \mathcal{O}_K . More precisely, if W_K is the group of root of unity in \mathcal{O}_K^* , then W_K is finite, cyclic and $\mathcal{O}_K^* \cong W_K \times \mathbb{Z}^r$.

Imaginary Quadratic Fields

- $d \equiv 2, 3 \pmod{4}$. In this case, $\mathcal{O}_K = \mathbb{Z}[\sqrt{d}]$ and $a + b\sqrt{d} \in \mathcal{O}_K^*$ if and only if $a^2 - b^2 d = 1$. If b = 0, then $a = \pm 1$ and $\mathcal{O}_K^* \cong \{\pm 1\} \cong \mathbb{Z}_2$. If $b \neq 0$, then $a^2 - b^2 d \ge -d$ and $-d \le -1$. If d = -1, $a^2 - b^2 d = a^2 + b^2 = 1$, then $a = \pm 1, b = 0$ or $a = 0, b = \pm 1$. Therefore, $\mathcal{O}_K^* \cong \{\pm 1, \pm i\} \cong \mathbb{Z}_4$.
- $d \equiv 1 \pmod{4}$. In this case, $\mathcal{O}_K = \mathbb{Z}[\frac{1+\sqrt{d}}{2}]$ and $\frac{a+b\sqrt{d}}{2} \in \mathcal{O}_K^*$ if and only if $a^2 - b^2d = 4$. If $-d \ge 4$, then b = 0 and $a = \pm 2$, so $\mathcal{O}_K^* \cong \mathbb{Z}_2$. If d = -3, $a^2 - b^2d = a^2 + 3b^2 = 4$, then $a = \pm 2$ and b = 0 or $a = \pm 1$ and $b = \pm 1$, so $\mathcal{O}_K^* \cong \{\pm\zeta_3, \pm\zeta_3^2, \pm 1\} \cong \mathbb{Z}_6$.

Remark 1. \mathcal{O}_K^* is finite if and only if $K = \mathbb{Q}$ or K is an imaginary quadratic field.

Real Quadratic Fields $K \subset \mathbb{R}$ and $r_1 = 2$, so $W_K = \{\pm 1\}$ and $\mathcal{O}_K^* \cong \{\pm 1\} \times \mathbb{Z}$. Characterization of the fundamental unit:

• $d \equiv 2, 3 \pmod{4}$. If $b = min\{\tilde{b} : d\tilde{b}^2 \pm 1 = a^2$: for some $a > 0\}$, then $a + b\sqrt{d}$ is a fundamental unit. (Exercise) • $d \equiv 1 \pmod{4}$. If $b = \min\{\tilde{b} : d\tilde{b}^2 \pm 4 = a^2$: for some $a > 0\}$, then $a + b\sqrt{d}$ is a fundamental unit. (Exercise)

Example 1. $\mathbb{Q}(\sqrt{3})$: $min\{\tilde{b}: d\tilde{b}^2 \pm 1 = a^2: \text{ for some } a > 0\} = 1 \text{ and } a = 2, \text{ then } 2 + \sqrt{2} \text{ is a fundamental unit.}$

A different way to find fundamental units is by continued fractions.

Theorem 1.2. Let n be the period of the continued fraction of \sqrt{d} with d square free and let $C_k = p_k/q_k$ be the k-th convergent. If $d \equiv 2, 3 \pmod{4}$, then $p_{n-1} + q_{n-1}\sqrt{d}$ is the fundamental unit of $\mathbb{Q}(\sqrt{d})$.

Example 2. In $\mathbb{Q}(\sqrt{6})$, we have that $\sqrt{6} = [2; \overline{2, 4}]$ (exercise). Then, $C_1 = \frac{p_1}{q_1} = a_0 + \frac{1}{a_1} = 2 + \frac{1}{2} = \frac{5}{2}$ and $5 + 2\sqrt{6}$ is a fundamental unit.

1.2 Analytic Class Number Formula II

$$L(X_K, 1) = \frac{2^{r_1} (2\pi)^{r_2} h_K R_K}{|W_K| \sqrt{|D_K|}}.$$

Theorem 1.3. Let K be a quadratic number field with discriminant D_K , then

$$L(X_K, 1) = \begin{cases} \frac{-1}{\sqrt{D_K}} \sum_{r=1}^{D_K} \left(\frac{D_K}{r}\right) \log\left(\sin\frac{\pi r}{D_K}\right), & D_K > 0\\ \frac{-\pi}{|D_K|^{3/2}} \sum_{r=1}^{|D_K|-1} \left(\frac{D_K}{r}\right) r, & D_K < 0 \end{cases}$$

Imaginary Quadratic Number Fields:

$$L(X_K, 1) = \frac{(2\pi)h_K}{|W_K|\sqrt{|D_K|}}.$$

Real Quadratic Number Fields:

$$L(X_K, 1) = \frac{2h_K \log \varepsilon}{\sqrt{D_K}},$$

where ε a fundamental unit.