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1 Lecture 2

1.1 Factorization in Ring of Integers

If K is a number field, we know that O is a Dedekind domain. Then, each ideal in
Ok may be written as a product of prime ideals.
Problem: Find p; and e;:

K OK pOK:p?}JSQ... ff
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1.2 Factorization in Quadratic Fields
Let K = Q(V/d), with d squarefree and O = Z[a] with
Vd, if d=2,3(mod 4)
o =
1+T\/E7 if d=1(mod 4)

If f is the minimal polynomial of a over @, then

fa) = 2 —d, if d = 2,3 (mod 4)
= xQ—x—i—HT\/a, if d=1(mod 4)

Remark 1. The following isomorphism holds canonically:

Ok [pOk = (Z[z]/(f(2)))/(POK) = Z[z]/(p, f(x)) = Zp[z]/(f(2))
Let us see the possible factors of f(z) in Zy[x]:

e f(x) is irreducible.
This implies Z,[z]/(f(x)) is a field, then Ok /pOf is also a field and so pOy is a
prime ideal.



For the remaining cases, observe that:

Ok Ok /pOk

| |

O /(f()) — Z[z]7(p, f(z)) — Zyp[x]/(f(2))

f(x) = g(z)h(x), with g(z) and h(z) distinct, monic and linear.
From Chinese remainder theorem

Zyla]/(f () = Zylz]/(g()) x Zpla]/(h(z)).

Restricting to each factor we see that the kernel of the map

Ok — Zp|z]/(G(x)) x Zp[z]/(h(x)),

is in the first factor the ideal (p, g(«)) and in the second factor (p,h(«)). Then,
the kernel is (p, g(@)) N (p, h(w)).

Remark 2. The ideals (p,g(a)) and (p,h(a)) are prime and relatively primes
(i.e their sum is the whole ring) and it holds that

(P, g(a) O (p, h(@)) = (p, 9(@)) - (p, h(a)).
(Exercise)

But from the diagram, the kernel of the map is in fact pOg, so the factorization
of this ideal is

POk = (p,g(a)) - (p, h(a)).

f(x) = g(z)?, with g(x) monic and irreducible.
First, we assume that p # 2.

Remark 3. If d = 2,3 (mod 4), then f(z) = 2* — d is a square in Z,[z] if and
only if p|d.

In fact,
22 —d=(z+a)? (mod) pe (d2z+a+d) =0 (mod) < p|d.
We take g(z) = x. Then the kernel of the map
Ok = Lyl /(=?)
is for one hand (p, g(a)) = (p,a?) and for the other hand is pOx. Then,
POk = (p,0%) = (p, ).

It remains to see what happens when p = 2, but it will be left as an exercise.



We resume the previous results in the next proposition,

Proposition 1. Let K = Q(v/d), with d squarefree and let f(x) be the minimal polyno-
mial of Vd over Q. Ifp is a prime number, then the factorization in irreducible factors
in Zplx]

f(@) =7,(2)gy(2)2, withe; =1 or2

implies
POk = (p, g1(a))® (p, g2 ().

A more general result is the following:

Theorem 1.1. Let K = Q(0) with 6 an algebraic integer. Let us suppose that p{ [Ok :
Z[0]] and let g(x) be the minimal polynomial of 6. If

f(@) = 91(2)7 g2(2) ... gr(2) (mod p),

then
pOx = pi'p5* ... py7,

where p; = (p, gi(0)) are prime ideals, N(p;) = pli and f; = deg(gi).

Remark 4. If Ox = ZI[0]], then the theorem holds for every prime. Also if g(x) in
Einsenstein in p.

Definition 1. Let p be a prime number and K a number field with [K : Q] = n.
e p is totally ramified if pOx = p", for some prime p.
e p is inert if pOk is prime.
o p splits completely if pOx = p1p2 ... Pn.

Corollary 1. Let 0 be an algebraic integer such that its minimal polynomial is Ein-
senstein in the prime p. If K = Q(6), then p is totally ramified in Of.

Corollary 2. If p1[Ok : Z[0]], then p ramifies in Ok if and only of p{ D .

Proof. 1f g(z) =[]\, (z — 6;) is the minimal polynomial of 6 over Q, then

Dg(1,6,6%,...,0" ") = T](6: - 0;)
1<j

and therefore, g(z) has multiple roots mod p if and only if p|Dg (0) = [Ok : Z[0]]| Dk .
U



1.3 Action of the Galois Group over primes

Theorem 1.2. Let K be a Galois extension over Q and p a prime number. Let
P1,...,pr be the primes in K over p. Then Gal(K/Q) acts transitively in this set,
i.e., for all i, j, there exists o € Gal(K/Q) such that o(p;) = p;.

Proof. Note that 0(Og) = Ok and if p is a prime over p, then o(p) is also a prime
ideal over p. Let p; and p; different primes over p. Suppose that o(p;) # p;, for all o €
Gal(K/Q). Both ideals are maximal, so p; C p;. Let « € p; but = ¢ o(p;). Taking the

norm
NK(:U):HJ(:U):x- H o(z) € pj.
o o# id
For the other hand, Nk (x) € Z, then Nk(z) € pZ = ZNyp; = ZNp; C p;. But
Nk (x) ¢ 01, so we have a contradiction. O

Corollary 3. Let K be a Galois extension over Q of degree n and let p be a prime over
p. Then, if pOg = b7 b5 ... bS", then ey =ea... =€y, fi = fo...= fr and erf = n.

2 Factorization in Cyclotomic Fields

Let m > 1 and K = Q((,). Then Ok = Z[(,,] and p a prime in Z. Then
P (z) = (91(2)g2(x) - . gr(2))" (mod p),

deg (gi(z))=/f for all i and er f = ¢(m). Suppose that p{m. So, 2™ —1 =], ¢a(z)
has no factors with multiplicity greater than one, in particular ¢,,(z). Then e = 1.

e Suppose f =1, then ¢,,(x) has only linear factors in Z,[x].
Lemma 1. Let m be a positive integer and L be a field with char(L) { m. If
a € L, then ¢m(a) = 0 if and only if a is a primitive m-th root of unity.

Follow the previous lemma, Z, has a primitive m-th root of unity. Z; is a cyclic
group of order p — 1, then its elements of order m are exactly those m|p — 1. So,
Z, has elements of order m if and only if p =1 (mod m).

Proposition 2. p splits completely in Ok if and only ptm and p =1 (mod m).
e f > 1. Let g(x) be an irreducible factor of ®,,(x) in Zy[z] , with deg(g(z))=f.

Let a be a root of g(z) and F' = Zy[a] = Zy[x]/(g(x)). Then [F : Z,] = f and F
has a primitive m-th root of unity, so |F| = pf and F* is cyclic with order p/ — 1.

Proposition 3. f is the order of p in Z;, and there are ¢(m)/f primes over p.
If p|m, then p ramifies.

Example 1. p in Q((y). From 2P — 1= (z — 1)? (mod p) and ®,(z) = L=, we have
®,(z) = (z — 1P (mod p), then

pOK = (p7 Cp - 1)p*17

that is, p is totally ramified.



2.1 Exercises

1. Let Og = Z[a], where K = Q(v/d), d square free.If f is the minimal polynomial
of o over Q, show that

f(m):{x2_d’ if d=2,3(mod 4)

:1;2—1:+1+T\/a, if d=1(mod 4)

2. Determine the factorization of 7,29 and 31 in Q(V/2).

3. Determine the factorization of 5 in Q((3).



