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1 Lecture 2

1.1 Factorization in Ring of Integers

If K is a number field, we know that OK is a Dedekind domain. Then, each ideal in
OK may be written as a product of prime ideals.
Problem: Find pi and ei:

K OK pOK = pe11 pe22 . . . perr

Q Z p

1.2 Factorization in Quadratic Fields

Let K = Q(
√
d), with d squarefree and OK = Z[α] with

α =

{ √
d, if d ≡ 2, 3 (mod 4)

1+
√
d

2 , if d ≡ 1 (mod 4)

If f is the minimal polynomial of α over Q, then

f(x) =

{
x2 − d, if d ≡ 2, 3 (mod 4)

x2 − x+ 1+
√
d

2 , if d ≡ 1 (mod 4)

Remark 1. The following isomorphism holds canonically:

OK/pOK ∼= (Z[x]/(f(x)))/(pOK) ∼= Z[x]/(p, f(x)) ∼= Zp[x]/(f(x))

Let us see the possible factors of f(x) in Zp[x]:

• f(x) is irreducible.
This implies Zp[x]/(f(x)) is a field, then OK/pOK is also a field and so pOK is a
prime ideal.
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For the remaining cases, observe that:

OK

��

// OK/pOK

��
OK/(f(x)) // Z[x]7(p, f(x)) // Zp[x]/(f(x))

• f(x) = g(x)h(x), with g(x) and h(x) distinct, monic and linear.
From Chinese remainder theorem

Zp[x]/(f(x)) ∼= Zp[x]/(g(x))× Zp[x]/(h(x)).

Restricting to each factor we see that the kernel of the map

OK → Zp[x]/(g(x))× Zp[x]/(h(x)),

is in the first factor the ideal (p, g(α)) and in the second factor (p, h(α)). Then,
the kernel is (p, g(α)) ∩ (p, h(α)).

Remark 2. The ideals (p, g(α)) and (p, h(α)) are prime and relatively primes
(i.e their sum is the whole ring) and it holds that

(p, g(α) ∩ (p, h(α)) = (p, g(α)) · (p, h(α)).

(Exercise)

But from the diagram, the kernel of the map is in fact pOK , so the factorization
of this ideal is

pOK = (p, g(α)) · (p, h(α)).

• f(x) = g(x)2, with g(x) monic and irreducible.
First, we assume that p 6= 2.

Remark 3. If d ≡ 2, 3 (mod 4), then f(x) = x2 − d is a square in Zp[x] if and
only if p|d.

In fact,

x2 − d ≡ (x+ a)2 (mod) p⇔ (d(2x+ a+ d) ≡ 0 (mod) ⇔ p|d.

We take g(x) = x. Then the kernel of the map

OK → Zp[x]/(x2)

is for one hand (p, g(α)) = (p, α2) and for the other hand is pOK . Then,

pOK = (p, α2) = (p, α)2.

It remains to see what happens when p = 2, but it will be left as an exercise.

2



We resume the previous results in the next proposition,

Proposition 1. Let K = Q(
√
d), with d squarefree and let f(x) be the minimal polyno-

mial of
√
d over Q. If p is a prime number, then the factorization in irreducible factors

in Zp[x]
f(x) = g1(x)e1g2(x)e2 , with ei = 1 or 2

implies
pOK = (p, g1(α))e1(p, g2(α))e2 .

A more general result is the following:

Theorem 1.1. Let K = Q(θ) with θ an algebraic integer. Let us suppose that p - [OK :
Z[θ]] and let g(x) be the minimal polynomial of θ. If

f(x) ≡ g1(x)e1g2(x)e2 . . . gr(x)er (mod p),

then
pOK = pe11 pe22 . . . perr ,

where pi = (p, gi(θ)) are prime ideals, N(pi) = pfi and fi = deg(gi).

Remark 4. If OK = Z[θ]], then the theorem holds for every prime. Also if g(x) in
Einsenstein in p.

Definition 1. Let p be a prime number and K a number field with [K : Q] = n.

• p is totally ramified if pOK = pn, for some prime p.

• p is inert if pOK is prime.

• p splits completely if pOK = p1p2 . . . pn.

Corollary 1. Let θ be an algebraic integer such that its minimal polynomial is Ein-
senstein in the prime p. If K = Q(θ), then p is totally ramified in OK .

Corollary 2. If p - [OK : Z[θ]], then p ramifies in OK if and only of p - DK .

Proof. If g(x) =
∏n
i=n(x− θi) is the minimal polynomial of θ over Q, then

DK(1, θ, θ2, . . . , θn−1) =
∏
i<j

(θi − θj)2

and therefore, g(x) has multiple roots mod p if and only if p|DK(θ) = [OK : Z[θ]]DK .
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1.3 Action of the Galois Group over primes

Theorem 1.2. Let K be a Galois extension over Q and p a prime number. Let
p1, . . . , pr be the primes in K over p. Then Gal(K/Q) acts transitively in this set,
i.e., for all i, j, there exists σ ∈ Gal(K/Q) such that σ(pi) = pj.

Proof. Note that σ(OK) = OK and if p is a prime over p, then σ(p) is also a prime
ideal over p. Let pi and pj different primes over p. Suppose that σ(pi) 6= pj , for all σ ∈
Gal(K/Q). Both ideals are maximal, so pj ( pj . Let x ∈ pj but x /∈ σ(pi). Taking the
norm

NK(x) =
∏
σ

σ(x) = x ·
∏
σ 6= id

σ(x) ∈ pj .

For the other hand, NK(x) ∈ Z, then NK(x) ∈ pZ = Z ∩ pj = Z ∩ pi ⊂ pi. But
NK(x) /∈ σ−1, so we have a contradiction.

Corollary 3. Let K be a Galois extension over Q of degree n and let p be a prime over
p. Then, if pOK = be11 be22 . . . berr , then e1 = e2 . . . = er, f1 = f2 . . . = fr and erf = n.

2 Factorization in Cyclotomic Fields

Let m ≥ 1 and K = Q(ζm). Then OK = Z[ζm] and p a prime in Z. Then

Φm(x) ≡ (g1(x)g2(x) . . . gr(x))e (mod p),

deg (gi(x))=f for all i and erf = φ(m). Suppose that p - m. So, xm − 1 =
∏
d|m φd(x)

has no factors with multiplicity greater than one, in particular φm(x). Then e = 1.

• Suppose f = 1, then φm(x) has only linear factors in Zp[x].

Lemma 1. Let m be a positive integer and L be a field with char(L) - m. If
α ∈ L, then φm(α) = 0 if and only if α is a primitive m-th root of unity.

Follow the previous lemma, Zp has a primitive m-th root of unity. Z∗p is a cyclic
group of order p− 1, then its elements of order m are exactly those m|p− 1. So,
Z∗p has elements of order m if and only if p ≡ 1 (mod m).

Proposition 2. p splits completely in OK if and only p - m and p ≡ 1 (mod m).

• f > 1. Let g(x) be an irreducible factor of Φm(x) in Zp[x] , with deg(g(x))=f .
Let α be a root of g(x) and F = Zp[α] ∼= Zp[x]/(g(x)). Then [F : Zp] = f and F
has a primitive m-th root of unity, so |F | = pf and F ∗ is cyclic with order pf − 1.

Proposition 3. f is the order of p in Z∗p and there are φ(m)/f primes over p.

If p|m, then p ramifies.

Example 1. p in Q(ζp). From xp − 1 ≡ (x− 1)p (mod p) and Φp(x) = xp−1
x−1 , we have

Φp(x) ≡ (x− 1)p−1 (mod p), then

pOK = (p, ζp − 1)p−1,

that is, p is totally ramified.
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2.1 Exercises

1. Let OK = Z[α], where K = Q(
√
d), d square free.If f is the minimal polynomial

of α over Q, show that

f(x) =

{
x2 − d, if d ≡ 2, 3 (mod 4)

x2 − x+ 1+
√
d

2 , if d ≡ 1 (mod 4)

2. Determine the factorization of 7,29 and 31 in Q( 3
√

2).

3. Determine the factorization of 5 in Q(ζ5).
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