Explicit Methods in Algebraic Number Theory

Amalia Pizarro Madariaga Instituto de Matemáticas Universidad de Valparaíso, Chile amalia.pizarro@uv.cl

1 Lecture 2

1.1 Factorization in Ring of Integers

If K is a number field, we know that \mathcal{O}_K is a Dedekind domain. Then, each ideal in \mathcal{O}_K may be written as a product of prime ideals. Problem: Find \mathfrak{p}_i and e_i :

$$\begin{array}{cccc} K & \mathcal{O}_K & p\mathcal{O}_K = \mathfrak{p}_1^{e_1}\mathfrak{p}_2^{e_2}\dots\mathfrak{p}_r^{e_r} \\ & & \\ & & \\ \mathbb{Q} & \mathbb{Z} & p \end{array}$$

1.2 Factorization in Quadratic Fields

Let $K = \mathbb{Q}(\sqrt{d})$, with d squarefree and $\mathcal{O}_K = \mathbb{Z}[\alpha]$ with

$$\alpha = \begin{cases} \sqrt{d}, & \text{if } d \equiv 2,3 \pmod{4} \\ \frac{1+\sqrt{d}}{2}, & \text{if } d \equiv 1 \pmod{4} \end{cases}$$

If f is the minimal polynomial of α over \mathbb{Q} , then

$$f(x) = \begin{cases} x^2 - d, & \text{if } d \equiv 2,3 \pmod{4} \\ x^2 - x + \frac{1 + \sqrt{d}}{2}, & \text{if } d \equiv 1 \pmod{4} \end{cases}$$

Remark 1. The following isomorphism holds canonically:

$$\mathcal{O}_K/p\mathcal{O}_K \cong (\mathbb{Z}[x]/(f(x)))/(p\mathcal{O}_K) \cong \mathbb{Z}[x]/(p, f(x)) \cong \mathbb{Z}_p[x]/(\overline{f}(x))$$

Let us see the possible factors of $\overline{f}(x)$ in $\mathbb{Z}_p[x]$:

• $\overline{f}(x)$ is irreducible.

This implies $\mathbb{Z}_p[x]/(\overline{f}(x))$ is a field, then $\mathcal{O}_K/p\mathcal{O}_K$ is also a field and so $p\mathcal{O}_K$ is a prime ideal.

For the remaining cases, observe that:

• $\overline{f}(x) = \overline{g}(x)\overline{h(x)}$, with $\overline{g}(x)$ and $\overline{h(x)}$ distinct, monic and linear. From Chinese remainder theorem

$$\mathbb{Z}_p[x]/(\overline{f}(x)) \cong \mathbb{Z}_p[x]/(\overline{g}(x)) \times \mathbb{Z}_p[x]/(\overline{h}(x)).$$

Restricting to each factor we see that the kernel of the map

$$\mathcal{O}_K \to \mathbb{Z}_p[x]/(\overline{g}(x)) \times \mathbb{Z}_p[x]/(\overline{h}(x))$$

is in the first factor the ideal $(p, g(\alpha))$ and in the second factor $(p, h(\alpha))$. Then, the kernel is $(p, g(\alpha)) \cap (p, h(\alpha))$.

Remark 2. The ideals $(p, g(\alpha))$ and $(p, h(\alpha))$ are prime and relatively primes (*i.e. their sum is the whole ring*) and *it holds that*

$$(p, g(\alpha) \cap (p, h(\alpha)) = (p, g(\alpha)) \cdot (p, h(\alpha)).$$

(Exercise)

But from the diagram, the kernel of the map is in fact $p\mathcal{O}_K$, so the factorization of this ideal is

$$p\mathcal{O}_K = (p, g(\alpha)) \cdot (p, h(\alpha)).$$

• $\overline{f}(x) = \overline{g}(x)^2$, with $\overline{g}(x)$ monic and irreducible. First, we assume that $p \neq 2$.

Remark 3. If $d \equiv 2, 3 \pmod{4}$, then $\overline{f}(x) = x^2 - d$ is a square in $\mathbb{Z}_p[x]$ if and only if p|d.

In fact,

$$x^2 - d \equiv (x+a)^2 \pmod{p} \Leftrightarrow (d(2x+a+d) \equiv 0 \pmod{} \Leftrightarrow p|d.$$

We take $\overline{g}(x) = x$. Then the kernel of the map

$$\mathcal{O}_K \to \mathbb{Z}_p[x]/(x^2)$$

is for one hand $(p, g(\alpha)) = (p, \alpha^2)$ and for the other hand is $p\mathcal{O}_K$. Then,

$$p\mathcal{O}_K = (p, \alpha^2) = (p, \alpha)^2.$$

It remains to see what happens when p = 2, but it will be left as an exercise.

We resume the previous results in the next proposition,

Proposition 1. Let $K = \mathbb{Q}(\sqrt{d})$, with d squarefree and let f(x) be the minimal polynomial of \sqrt{d} over \mathbb{Q} . If p is a prime number, then the factorization in irreducible factors in $\mathbb{Z}_p[x]$

$$\overline{f}(x) = \overline{g}_1(x)^{e_1}\overline{g}_2(x)^{e_2}$$
, with $e_i = 1$ or 2

implies

$$p\mathcal{O}_K = (p, g_1(\alpha))^{e_1} (p, g_2(\alpha))^{e_2}$$

A more general result is the following:

Theorem 1.1. Let $K = \mathbb{Q}(\theta)$ with θ an algebraic integer. Let us suppose that $p \nmid [\mathcal{O}_K : \mathbb{Z}[\theta]]$ and let g(x) be the minimal polynomial of θ . If

$$f(x) \equiv g_1(x)^{e_1} g_2(x)^{e_2} \dots g_r(x)^{e_r} \pmod{p},$$

then

$$p\mathcal{O}_K = \mathfrak{p}_1^{e_1}\mathfrak{p}_2^{e_2}\dots\mathfrak{p}_r^{e_r},$$

where $\mathfrak{p}_i = (p, g_i(\theta))$ are prime ideals, $N(\mathfrak{p}_i) = p^{f_i}$ and $f_i = deg(g_i)$.

Remark 4. If $\mathcal{O}_K = \mathbb{Z}[\theta]$, then the theorem holds for every prime. Also if g(x) in Einsenstein in p.

Definition 1. Let p be a prime number and K a number field with $[K : \mathbb{Q}] = n$.

- p is totally ramified if $p\mathcal{O}_K = \mathfrak{p}^n$, for some prime \mathfrak{p} .
- p is inert if $p\mathcal{O}_K$ is prime.
- p splits completely if $p\mathcal{O}_K = \mathfrak{p}_1\mathfrak{p}_2\ldots\mathfrak{p}_n$.

Corollary 1. Let θ be an algebraic integer such that its minimal polynomial is Einsenstein in the prime p. If $K = \mathbb{Q}(\theta)$, then p is totally ramified in \mathcal{O}_K .

Corollary 2. If $p \nmid [\mathcal{O}_K : \mathbb{Z}[\theta]]$, then p ramifies in \mathcal{O}_K if and only of $p \nmid D_K$.

Proof. If $g(x) = \prod_{i=n}^{n} (x - \theta_i)$ is the minimal polynomial of θ over \mathbb{Q} , then

$$D_K(1,\theta,\theta^2,\ldots,\theta^{n-1}) = \prod_{i< j} (\theta_i - \theta_j)^2$$

and therefore, $\overline{g}(x)$ has multiple roots mod p if and only if $p|D_K(\theta) = [\mathcal{O}_K : \mathbb{Z}[\theta]]D_K$.

1.3 Action of the Galois Group over primes

Theorem 1.2. Let K be a Galois extension over \mathbb{Q} and p a prime number. Let $\mathfrak{p}_1, \ldots, \mathfrak{p}_r$ be the primes in K over p. Then $Gal(K/\mathbb{Q})$ acts transitively in this set, *i.e.*, for all i, j, there exists $\sigma \in Gal(K/\mathbb{Q})$ such that $\sigma(\mathfrak{p}_i) = \mathfrak{p}_j$.

Proof. Note that $\sigma(\mathcal{O}_K) = \mathcal{O}_K$ and if \mathfrak{p} is a prime over p, then $\sigma(\mathfrak{p})$ is also a prime ideal over p. Let \mathfrak{p}_i and \mathfrak{p}_j different primes over p. Suppose that $\sigma(\mathfrak{p}_i) \neq \mathfrak{p}_j$, for all $\sigma \in \operatorname{Gal}(K/\mathbb{Q})$. Both ideals are maximal, so $\mathfrak{p}_j \subsetneq \mathfrak{p}_j$. Let $x \in \mathfrak{p}_j$ but $x \notin \sigma(\mathfrak{p}_i)$. Taking the norm

$$N_K(x) = \prod_{\sigma} \sigma(x) = x \cdot \prod_{\sigma \neq id} \sigma(x) \in \mathfrak{p}_j$$

For the other hand, $N_K(x) \in \mathbb{Z}$, then $N_K(x) \in p\mathbb{Z} = \mathbb{Z} \cap \mathfrak{p}_j = \mathbb{Z} \cap \mathfrak{p}_i \subset \mathfrak{p}_i$. But $N_K(x) \notin \sigma^{-1}$, so we have a contradiction.

Corollary 3. Let K be a Galois extension over \mathbb{Q} of degree n and let \mathfrak{p} be a prime over p. Then, if $p\mathcal{O}_K = \mathfrak{b}_1^{e_1}\mathfrak{b}_2^{e_2}\ldots\mathfrak{b}_r^{e_r}$, then $e_1 = e_2\ldots = e_r$, $f_1 = f_2\ldots = f_r$ and erf = n.

2 Factorization in Cyclotomic Fields

Let $m \geq 1$ and $K = \mathbb{Q}(\zeta_m)$. Then $\mathcal{O}_K = \mathbb{Z}[\zeta_m]$ and p a prime in \mathbb{Z} . Then

 $\Phi_m(x) \equiv (g_1(x)g_2(x)\dots g_r(x))^e \pmod{\mathbf{p}},$

deg $(g_i(x))=f$ for all *i* and $erf = \phi(m)$. Suppose that $p \nmid m$. So, $x^m - 1 = \prod_{d|m} \phi_d(x)$ has no factors with multiplicity greater than one, in particular $\phi_m(x)$. Then e = 1.

• Suppose f = 1, then $\phi_m(x)$ has only linear factors in $\mathbb{Z}_p[x]$.

Lemma 1. Let m be a positive integer and L be a field with $char(L) \nmid m$. If $\alpha \in L$, then $\phi_m(\alpha) = 0$ if and only if α is a primitive m-th root of unity.

Follow the previous lemma, \mathbb{Z}_p has a primitive *m*-th root of unity. \mathbb{Z}_p^* is a cyclic group of order p-1, then its elements of order *m* are exactly those m|p-1. So, \mathbb{Z}_p^* has elements of order *m* if and only if $p \equiv 1 \pmod{m}$.

Proposition 2. p splits completely in \mathcal{O}_K if and only $p \nmid m$ and $p \equiv 1 \pmod{m}$.

• f > 1. Let g(x) be an irreducible factor of $\Phi_m(x)$ in $\mathbb{Z}_p[x]$, with $\deg(g(x)) = f$. Let α be a root of g(x) and $F = \mathbb{Z}_p[\alpha] \cong \mathbb{Z}_p[x]/(g(x))$. Then $[F : \mathbb{Z}_p] = f$ and F has a primitive *m*-th root of unity, so $|F| = p^f$ and F^* is cyclic with order $p^f - 1$.

Proposition 3. f is the order of p in \mathbb{Z}_p^* and there are $\phi(m)/f$ primes over p.

If p|m, then p ramifies.

Example 1. p in $\mathbb{Q}(\zeta_p)$. From $x^p - 1 \equiv (x-1)^p \pmod{p}$ and $\Phi_p(x) = \frac{x^p - 1}{x-1}$, we have $\Phi_p(x) \equiv (x-1)^{p-1} \pmod{p}$, then

$$p\mathcal{O}_K = (p, \zeta_p - 1)^{p-1},$$

that is, p is totally ramified.

2.1 Exercises

1. Let $\mathcal{O}_K = \mathbb{Z}[\alpha]$, where $K = \mathbb{Q}(\sqrt{d})$, d square free. If f is the minimal polynomial of α over \mathbb{Q} , show that

$$f(x) = \begin{cases} x^2 - d, & \text{if } d \equiv 2,3 \pmod{4} \\ x^2 - x + \frac{1 + \sqrt{d}}{2}, & \text{if } d \equiv 1 \pmod{4} \end{cases}$$

- 2. Determine the factorization of 7,29 and 31 in $\mathbb{Q}(\sqrt[3]{2})$.
- 3. Determine the factorization of 5 in $\mathbb{Q}(\zeta_5)$.