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1 Lecture 1

1.1 Number fields and ring of integers

Algebraic number theory studies the arithmetic aspects of the number fields. Such
fields are involved in the solution of many rational problems, as the following diophan-
tine problems.

Pell Equation: Find integer numbers x, y such that x2 − dy2 − 1 = 0, with d > 1
squarefree.
Note that x2 − dy2 = (x−

√
dy)(x+

√
dy), if we consider the ring Z[

√
d] = {a+ b

√
d :

a, b ∈ Z}. So, to solve this diophantine equation is equivalent to look into Z[
√
d]∗.

Pythagorean triples: Find integers numbers without common factors x, y, z such
that x2 + y2 = z2.
x2 + y2 = (x + yi)(x − iy) in Z[i]. We have Z[i] in a unique factorization domain
(exercise), so each element in Z[i] can be written in a unique way (unless order an
multiplication by units) as the product of irreducible elements. By using this fact, it
is possible to prove that x + iy = uα2, with α, u ∈ Z[i] and u a unit (i.e u ∈ {±1}.
(exercise).
If α = m + ni, with m,n ∈ Z, then x + iy = ±(m + ni)2 = ±(m2 + 2mni − n2), i.e.,
x = ±(m2 − n2), y = ±2mn. Therefore, z2 = (m2 + n2)2 and z = ±(m2 + n2). m and
n must be relatively primes and not both odd.

Is it possible to apply this idea to solve the general case xn + yn = zn, n > 2?
Fermat 1 conjectured that there is no integer solution non zero for n > 2. In order to
study this problem, it is enough to consider the case n = p, with p an odd prime.
Suppose that for some odd prime p there is a solution x, y, z ∈ Z−{0} with no common
factors. Let us consider the following cases:

(a) p does not divide any x, y, z.

1Now it is known as the Last Fermat Theorem and was proved by Andrew Wiles in 94
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(b) p divides exactly one of them.

We will only see the case (a).

• p = 3.
If x, y, z are not multiples of 3, then x3, y3, z3 ≡ ±1 (mod 9) and x3 + y3 6≡ z3

(mod 9), so it cannot have non trivial solution.

• p > 3.

xp + yp = (x+ y)(x+ ζpy)(x+ ζ2py) · · · (x+ ζp−1p y) = zp,

where ζp = e2πi/p in Z[ζp] = {ap−2ζp−2p + . . . a1ζp + a0} (exercise).

Kummer asserted that this ring was a unique factorization domain and from here
he obtained a proof of the Fermat Theorem. However, only is valid if p < 23. Idea: If
we assume that Z[ζp] is a UFD, it is possible to prove that x + ζpy = uαp, for some
α ∈ Z[ζp] and u ∈ Z[ζp]

∗ and also that if x, y are not divisible by p, then x ≡ y (mod)
p. Putting xp + (−z)p = (−y)p, we obtain that x ≡ −z (mod) p. This implies

2xpx ≡ xp + yp = zpx ≡ (−x)p (mod) p,

so p | 3xp, but p 6= 3 and p does not divide x, which is a contradiction and then
there is no solutions of the case (a).

More general case: Dedekind discovered that although the elements of Z[ζp] may not
factor in a unique way in irreducibles, the ideals of this ring always factors in product
of prime ideals. From here, it is possible to prove that the principal ideal generated by
x+ ζpy may be written as (x+ ζpy) = Ip, for some I ideal.
There are certain primes p (regular primes) for which I may be a principal ideal I = (α),
then

(x+ ζpy) = Ip = (α)p = (αp),

and again (x+ ζpy) = uαp, for u a unit. Then x ≡ y (mod) p, which is a contradiction.

1.2 Number Fields

Definition 1. A field K is an algebraic number field if is a finite extension of Q.
Their elements will be called algebraic numbers, that is, they are roots of nonzero
polynomials with rational coefficients. The monic polynomial Pα(x) of lowest degree of
which α ∈ K is a root is called de minimal polynomial of α.

If α is root of g(x) ∈ Q[x] , then Pα(x)|g(x).

Example 1. Quadratic fields.
Quadratic fields are extension K of Q of degree 2 Q(

√
d), where d is squarefree. If

d < 0 we say that Q(
√
d) is an imaginary quadratic field and of d > 0 a real quadratic

field.
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Example 2. Cyclotomic fields.

Let n ≥ 1 and let ζn be a primitive n-th root of unity in C. The n-th cyclotomic
field is the field Q(ζn). The degree of this field over Q is φ(n), where φ is the Euler’s
phi function.
The minimal polynomial of ζn over Q is called the cyclotomic polynomial Φn(x) and it
verifies the following:

(i) Let Un be the group of n-th roots of unity in C and let U ′n = {ζan : 0 ≤ a <
n, gcd(a, n) = 1}. Then

Φn(x) =
∏
ζ∈U ′

(x− ζ).

(ii) Φn(x) is a monic polynomial with integer coefficients and irreducible over Q. Its
degree is φ(n).

(ii)
∏
d|n Φd(x) = xn − 1.

1.3 Algebraic Integers

Definition 2. An element α in a number field will be called algebraic integer if there
exists a monic polynomial f(x) ∈ Z[x] such that f(α) = 0.

Example 3. 3
√

2,
√

2+2 are algebraic integers.
√
2
3 is algebraic, but it is no an algebraic

integer.

Theorem 1.1. Let α be an algebraic integer. Then, the minimal polynomial of α has
integer coefficients.

Proof. Let Pα(x) ∈ Q[x] the minimal polynomial of α and g(x) ∈ Z[x] with g(α) = 0.
Then g = Pαh, for some h(x) ∈ Q[x]. If Pα(x) /∈ Z[x], then there is a prime p dividing
the denominator of some coefficient of Pα. Let pi the biggest power of p with this
property and pj the biggest power dividing the coefficients of h. Then:

pi+jg = (piPα)(pjh) ≡ 0 (mod) p.

As Zp[x] is an integral domain, piPα or pjh are zero mod p, which is a contradiction.

From now, we will denote by OK the set of algebraic integers in the number field
K.

Corollary 1. OQ = Z.
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1.4 Characterization of Algebraic Integers

Theorem 1.2. The following assertions are equivalents:

(i) α is algebraic integer.

(ii) Z[α] = {f(α) : f(x) ∈ Z[x]} is a finitely generated Z-module.

(iii) There exists a finitely generated Z-module M such that αM ⊆M and γM 6= {0}
for all γ ∈ Z[α]− {0}.

Proof. i)⇒ ii) Let f(x) = xn + a1x+ . . . a0 ∈ Z[x] and f(α) = 0. Let us consider the
following Z-module: M = Z+Zα+ . . .Zαn−1. It is clear that M ⊆ Z[α]. By induction:
suppose that αk ∈M , then:

αn+k = αkαn

= αk[−(an−1α
n−1 + . . .+ a0]

= (−αkan−1)αn−1 + . . .+ (−αka0).

Because −αkai ∈ Z[α] for i = 0, 1, . . . , n − 1, we have that αn+k ∈ M , therefore
M = Z[α].
ii)⇒ iii). We take M = Z[α]. As α ∈M , then αM ⊆M and γ = γ · 1 ∈ γM .
iii)⇒ i). Let {x1, x2 . . . xr} be a generators of M . By hypothesis αxi ∈M , then there
exists a set of integers numbers cij such that αxi =

∑r
j=1 cijxj , for all i = 1, . . . , r. Let

C = (cij)ij , then

C ·


x1
.
.
.
xr

 = α ·


x1
.
.
.
xr

⇔ (C − αId)


x1
.
.
.
xr

 = 0.

There is at least one xi non zero, so det(C − αId) = 0 and then det(C − xId) ∈
Z[x].

Theorem 1.3. Let K be a number field. Then OK is a ring.

Proof. If α, β are algebraic integers, then Z[α] and Z[β] are a finitely generated as Z-
modules. From here, we have that M = Z[α, β] also is a finitely generated Z-module.
Moreover, (α± β)M ⊆M and (αβ)M ⊆M , and then α± β and αβ belong to the set
of algebraic integers.

1.5 Discriminant of Number Fields

Let K be a number field with [K : Q] = n and let σ1, . . . , σn be the complex embeddings
of K. For α1, . . . , αn ∈ K we define the discriminant of α1, . . . , αn by

DK(α1, . . . , αn) = det(σi(αj))
2. (1.1)
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Theorem 1.4.
DK(α1, . . . , αn) = det(TK(αiαj).

Lemma 1. If γi =
∑n

j=1 cijαj, with cij ∈ Q, then

DK(γ1, . . . , γn) = det(cij)
2DK(α1, . . . , αn).

Proof. γkγm =
∑n

i,j=1 ckicmjαiαj .

Theorem 1.5. DK(α1, . . . , αn) 6= 0 if and only if the set {α1, . . . , αn} is linearly
independent over Q.

Proof. If {α1, . . . , αn} is linearly dependent over Q then the columns if the matrix
(σi(αj)) are linearly dependent, soDK(α1, . . . , αn) = 0. Reciprocally, ifDK(α1, . . . , αn) =
0 then the columns of (TK(αiαj))ij are l.d. Let us suppose that α1, . . . , αn is l.i.. We

fix rational numbers (not all zero) such that a1R1 + . . . + anRn =
−→
0 , where Rl are

the columns of (TK(αiαj))ij and let α = a1α1 + . . . + anαn 6= 0. Looking the j-th
coordinate of each row, we see that Tk(ααj) = 0 for all j. Note that {α1, α2, . . . , αn}
is in fact, a basis for K over Q and then {αα1, αα2, . . . , ααn} is a also a basis, then
TK(β) = 0 for all β ∈ K, which is a contradiction.

Theorem 1.6. Let K = Q(α), and α1, α2, . . . , αn the conjugated of α over Q. Then

DK(1, α, α2, . . . , αn−1) =
∏

1≤r<s≤n
(αr − αs)2 = ±NK(f ′(α)),

where f is the irreducible monic polynomial of α over Q and the signe is + if and only
if n ≡ 0 or 1 (mod 4).

Proof. It is not difficult to prove that

DK(1, α, α2, . . . , αn−1) = det


1 α1 α2

1 · · · αn−11

1 α2 α2
2 · · · αn−12

...
... · · ·

...
...

1 αn α2
n · · · αn−1n


2

=
∏

1≤r<s≤n
(αr − αs)2.

By using that NK(f ′(α)) =
∏n
i=1 σi(f

′(α)), we prove the second equality.

1.6 Integral basis

By using discriminant, we can prove that the ring of integers OK of a number field K
with [K : Q] = n is a free abelian group of rank n, that is, is the direct product of
n subgroups, each of which is isomorphic to Z. It is known that if A and B are free
abelian groups of rank n, and A ⊆ B ⊆ C, then so is C. If α ∈ K, then there exists an
integer m ∈ Z such that mα is an algebraic integer. Following this, we can find a basis
of K over Q, say {α1, . . . , αn}, contained in OK . So, the free abelian group of rank n
A = Zα1 + . . .+ Zαn is contained in OK .
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Theorem 1.7. Let {α1, . . . , αn} be a basis for K over Q consisting entirely of algebraic
integers, and set D = DK(α1, . . . , αn). Then, every α ∈ OK can be expressed in the
form

1

D
(m1α1 + . . .+mnαn)

with mj ∈ Z and m2
j are divisible by D.

It follows that OK is containdes in the free abelian group B = Zα1
D + . . . + αn

D , so
we have the following corollary

Corollary 2. OK is a free abelian group of rank n.

It means that there exits β1, . . . , βn in OK such that every α ∈ OK has unique
representation

m1β1 + . . .+mnβn,

where mi ∈ Z. The set {β1, . . . , βn} is called integral basis for OK .
Although ring of integers has many integral basis, their discriminants are the same.

Theorem 1.8. Let {β1, . . . , βn} and {α1, . . . , αn} be two integral bases for OK . Then

DK(β1, . . . , βn) = DK(α1, . . . , αn).

Proof. It is enough to apply lemma(1).

Definition 3. Let K be a number field of degree n over Q. We define the disciminant
of K by

DK := DK(α1, . . . , αn),

where α1, . . . , αn is a integral basis of OK .

1.7 Some explicit computations I

1.8 Ring of Integers of Quadratic Number Fields

Let us consider a quadratic number field K = Q(
√
d) with d square free. Let α =

a+b
√
d ∈ OK , then its conjugate α′ = a−b

√
d is also in OK . We have that α+α′ ∈ OK ,

but 2a ∈ Q, so 2a is in fact an integer so a =
a′

2
,∈ Z. Looking the equation of α over

Q
0 = (x− α)(x− α′) = x2 − (α+ α′)x+ αα′,

it follows that αα′ ∈ Z (because αα′ ∈ OK ∩Q), that is,

αα′ = a2 − b2d =

(
a′

2

)2

− b2d ∈ Z.

Then, (a′)2 − 4b2d ∈ 4Z. Because a′ ∈ Z, 4b2d ∈ Z and so 4b2 ∈ Z due to d is square

free. Now it follows that 2b ∈ Z and so b =
b′

2
, with b′ ∈ Z. Now, we can see that α

has the following representation:
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α =
a′

2
+
b′
√
d

2
.

Also, because αα′ ∈ Z, (
a′

2

)2

−
(
b′

2

)2

d ∈ Z.

Note that d 6≡ 0 (mod 4), so d ≡ 1, 2, 3 (mod 4) and

(a′)2 ≡ (b′)2d (mod) 4.

Therefore, a′ and b′ have the same parity. Let us see the two cases:

• If a′ and b′ are even, then α = ã+ b̃
√
d, with ã and b̃ ∈ Z.

• If a′ and b′ are odd, then (a′)2 ≡ (b′)2 ≡ 1 (mod) 4, so d ≡ 1 (mod 4).

Finally, we have the following proposition:

Proposition 1. If Q(
√
d) with d squarefree, then

OK =

{
Z[
√
d], if d ≡ 2, 3 (mod 4)

Z
[
1+
√
d

2

]
, if d ≡ 1 (mod 4)

From the proposition it is clear that an integral basis, depending on d, is the fol-
lowing: {

{1,
√
d}, if d ≡ 2, 3 (mod 4)

{1, 1+
√
d

2 }, if d ≡ 1 (mod 4)

1.9 Discriminant of Quadratic Number Fields

The complex embeddings of Q(
√
d) are σ(a+b

√
d) = a+b

√
d and τ(a+b

√
d) = a−b

√
d.

So, Tk(a+ b
√
d) = 2a. Let {1, α} be a integral basis of OK . Then,

DK(1, α) = det

(
Tk(1) TK(α)
TK(α) Tk(α

2)

)
= det

(
2 2a
2a 2(a2 + b2d)

)
= 4b2d.

Finally, we have:

DK =

{
4d, if d ≡ 2, 3 (mod 4)
d, d ≡ 1 (mod 4)

Moreover, this discriminant satisfies the following:

DK ≡ 0, 1 (mod 4), Stickelgerger’s criterion
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1.10 Ring of Integers and Discriminant of Cyclotomic Number Fields

Proposition 2. Let n = pl with p a prime number and ζ a primitive n-th root of unity
in C. Then {1, ζ, . . . , ζφ(n)−1} is a Q- basis of K = Q(ζ) and

DK(1, ζ, . . . , ζφ(n)−1) = ±rs, where s = pl−1(lp− l − 1).

Proof. The main steps are the following:

• Φn(x) =
xp

l − 1

xpl−1 = xp
l−1(l−1) + . . .+ x2p

l−1
+ 1.

• From (1.6), DK(1, ζ, . . . , ζφ(n)−1) = ±NK(φ′(ζ)).

• Φn(x) =
plζp

l−1

ζn/p
.

• NK(φ′(ζ)) =
NK(plζp

l−1
)

NK(ζn/p)
=
plφ(n)NK(ζp

l−1
)

NK(ζn/p)
.

Proposition 3. Let n = p, with p a prime number and let ζ be a n-th primitive root
of unity. If K = Q(ζ), then {1, ζ, ζ2, . . . , ζp−2} is and integral basis for OK .

Proof. The main steps are the following:

• Φp(x) =
xp − 1

x− 1
= xp + . . .+ x+ 1.

• From (1.6), DK(1, ζ, . . . , ζp−2) = ±
p−1∏
i=1

(φ′(ζi)).

• Φ(ζ
i) =

pζ−i

ζi − 1
.

• DK(1, ζ, . . . , ζp−2) = ±
p−1∏
i=1

pζ−i

ζi − 1
= ± pp−1

Φp(1)
= ±pp−2 6= 0.

• ζi are algebraic integers, so if {α1, . . . , αp−2} is an integral basis, then from (1),

DK(1, ζ, . . . , ζp−2) = c2DK(α1, . . . , αp−2),

where c is the determinant of the matrix C = (cij) where ζi =

p−2∑
j=1

cijαj . it verifies

that c = 1. Let us considere the following result:
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Let a1, . . . , an ∈ OK linearly independent over Q. Let N = Za1 + . . .+ Zan and
m = [OK : N ]. Prove that DK(a1, . . . , an) = m2DK .

If we fix N = Z · 1 + Zζ2 . . . + Zζp−1, then [OK : N ] = 1, so 1, ζ, . . . , ζp−2 is an
integral basis.

Theorem 1.9. Let ζ be a n-th primitive root of unity. If K = Q(ζ), then {1, ζ, ζ2, . . . , ζφ(n)}
is and integral basis for OK , i.e. OK = Z[ζ]. In particular, the discriminant of K is

DK =
(−1)φ(n)/2nφ(n)∏

p|n p
φ(n)/p−1 .

1.11 Exercises

1. (i) Let K be a number field with [K : Q] = n and β ∈ OK . Prove that β ∈ O∗K
if and only if NK(β) = 1.

(ii) Prove that Z[
√

2]∗ = {±(1 +
√

2)k : k ∈ Z} and Z[
√

2]∗ = {±1}

2. If K is a number field, prove that its discriminant DK is an integer.

3. Let a1, . . . , an ∈ OK linearly independent over Q. Let N = Za1 + . . .+ Zan and
m = [OK : N ]. Prove that DK(a1, . . . , an) = m2DK . (Hint: Use the following
result: Let M = Zα1 + . . . + Zαn and N be a submodule. Then there exists
β1, . . . , βm ∈ N with m ≥ n such that N = Zβ1 + . . .+ βmZ and βi =

∑
j≥i pijαj

with 1 ≤ i ≤ m and pij ∈ Z)

4. Prove the Stickelgerger’s criterion.

5. Let f(x) = xn + an−1x
n−1 + . . . + a1x + a0 ∈ Z[x] the minimal polynomial

of θ. Let K = Q(θ). If for each prime p such that p2|DK(θ) we have f(x)
Eisensteinian (that is, f(x) satisfies the Eisenstein’s criterion for irreducibility for
p) with respect to p. show that OK = Z[θ]. (Hint: Use the problem 3)

6. If the minimal polynomial of α is f(x) = xn + ax+ b, show that for K = Q(α),

DK(α) = (−1)(
n
2)(nnbn−1 + an(1− n)n−1).

7. Determine an integral basis for K = Q(θ), where θ3 + 2θ + 1 = 0.
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