
Lecture 6

January 15, 2018

1 Sieves

1.1 The sieve of Eratosthenes

The Inclusion-Exclusion principle, or the Möbius inversion formula, can be
used – at least theoretically – to calculate π(x). For a sufficiently large x,
let us write

P =
∏
p≤
√
x

p.

Then an integer n with
√
x < n < x is prime if and only if (n, P ) = 1. Thus,

we can write

π(x)− π(
√
x) + 1 =

∑
n≤x

E((n, P ))) =
∑
n≤x

∑
d|n
d|P

µ(d) =
∑
d|P

µ(d)
⌊x
d

⌋
,(1)

where, as we know,

E(n) :=
∑
d|n

µ(d)

is 1 if n = 1 and 0 otherwise (see Theorem 1 (i) of Lecture 4). If at this
stage we insert the simple estimate⌊x

d

⌋
=
x

d
+O(1)

in (1), we obtain

π(x)− π(
√
x) + 1 = x

∏
p≤
√
x

(
1− 1

p

)
+O(2π(

√
x)). (2)
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By the estimate of Problem 5 of Lecture 2, the first term of the right hand
side of (2) is

∼ 2e−γ
x

log x
as x→∞,

while by Chebyshev’s estimates, the error term in (2) can be seen to be
larger than any power of x, thus showing that the error term in (2) can
in fact be larger than the main term, thereby spoiling our goal to obtain
something worthwhile by this approach.

The above calls for two comments. On the one hand, the exact formula
(1) – called the sieve formula of Eratosthenes or at times the Legendre for-
mula – involves too many terms for any reasonable practical estimate. On
the other hand, the estimate of the main term itself shows, taking into ac-
count the Prime Number Theorem and the fact that e−γ 6= 1, that the “error
terms” created by replacing bx/dc by x/d have made a global contribution
of the same order of magnitude as the “main term”. This suggests that this
method, even suitably adapted, will never allow for a proof of the Prime
Number Theorem. However, it can provide Chebyshev type estimates in a
wide context.

In order to obtain a nontrivial result starting from formula (1), one may
introduce a parameter y, 2 ≤ y ≤ x, and bound π(x) − π(y) + 1 by the
number of integers n ≤ x having no prime factor p ≤ y. With the same
calculations we get

π(x) ≤ x
∏
p≤y

(
1− 1

p

)
+O(2y)

=
x(e−γ + o(1))

log y
+O(2y)� x

log log x
, (3)

where we chose y = log x.

With the aim of improving the efficiency of the above method, Viggo
Brun invented the combinatorial sieve between 1917 and 1924.

2 The Brun pure sieve

The Eratosthenes sieve rests on the identity

E(n) =
∑
d|n

µ(d)
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Brun’s idea was to introduce two auxiliary functions µ1 and µ2 satisfying∑
d|n

µ1(d) ≤ 0 ≤
∑
d|n

µ2(d) (4)

for n > 1 (and µ1(1) = µ2(1) = 1) and vanishing often enough so that the
number of nonzero terms in the resulting formula analogous with (1) is not
overwhelming. Brun’s initial choice lead to what is now called Brun’s pure
sieve and is the following.

Theorem 1. Denote by χt the characteristic function of the set of integers
n such that ω(n) ≤ t. Then for each integer h ≥ 0, the functions defined by

µi(n) = µ(n)χ2h+2−i(n) (i = 1, 2)

satisfy inequalities (4).

Proof. Since
∑

d|n µi(d) depends only on the kernel of n, we may assume
that µ(n) 6= 0. If ω(n) = k, then, for each r with 0 ≤ r ≤ k, it is clear that
n has exactly

(
k
r

)
divisors d with ω(d) = r. For any given t ≥ 0, we can thus

write

χt ∗ 1(n) =
∑
d |n

ω(d)≤t

µ(d) =
∑

0≤r≤t
(−1)r

(
k

r

)
= (−1)t

(
k − 1

t

)
,

where the last equality is easily obtained by induction over t.

The above result immediately yields the following corollary.

Corollary 1. Let A be a finite set of integers and let P be a set of prime
numbers. Write

Ad = #{a ∈ A : a ≡ 0 (mod d)},
P (y) =

∏
p≤y
p∈P

p,

S(A,P, y) = #{a ∈ A : (a, P (y)) = 1}.

Then, for each integer h ≥ 0,∑
d |P (y)

ω(d)≤2h+1

µ(d)Ad ≤ S(A,P, y) ≤
∑

d |P (y)
ω(d)≤2h

µ(d)Ad.
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Let us see how the above result helps us to considerably improve the
upper bound of π(x) obtained by the Eratosthenes sieve (see (3)).

In Corollary 1, we chose A = {n : n ≤ x}, ℘ = {all primes} and
P = P (y) =

∏
p≤y p. Then S(A,P, y) is the number of positive integers

n ≤ x having no prime factor p ≤ y, so that

S(A,P, y) ≤
∑
d|P (y)
ω(d)≤2h

µ(d)
⌊x
d

⌋

= x
∑
d|P (y)
ω(d)≤2h

µ(d)

d
+O

 ∑
d|P (y)
ω(d)≤2h

1



= x
∏
p≤y

(
1− 1

p

)
+O

 ∑
d|P (y)
ω(d)≤2h

1 + x
∑
d|P (y)
ω(d)>2h

1

d

 , (5)

and similarly

S(A,P, y) ≥
∑
d|P (y)

ω(d)≤2h+1

µ(d)
⌊x
d

⌋

= x
∏
p≤y

(
1− 1

p

)
+O

 ∑
d|P (y)

ω(d)≤2h+1

1 + x
∑
d|P (y)

ω(d)>2h+1

1

d

 . (6)

The first of the two error terms appearing either at (5) or at (6) does
not exceed y2h+1 since this is an upper bound for all integers d such that
d | P (y) and ω(d) ≤ 2h + 1. The d-sums arising in the second error terms
are bounded, namely, say for the second error term in (5), by

∑
d|P (y)
ω(d)>2h

1

d
≤
∑
k>2h

1

k!

∑
p≤y

1

p

k

≤
∑
k>2h

1

k!
(log log y + c0)

k.

Using the weak form of Stirling’s formula k! ≥ (k/e)k, together with y < x,
we get ∑

d|P (y)
ω(d)>2h

1

d
≤
∑
k>2h

1

k!
(log log x+ c0)

k ≤
∑
k>2h

(
e log log x+ ec0

k

)k
.
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Choosing an integer h ≥ e log log x+ ec0, we obtain

∑
d|P (y)
ω(d)>2h

1

d
≤
(

1

2

)2h(
1 +

1

2
+

1

4
+ · · ·

)
� 1

(log x)2e log 2
� 1

(log x)2
,

because 2e log 2 = e log 4 > e > 2. For this choice of h, we impose that
y2h+1 ≤ x/(log x)2, which for h > 1 is implied by

y ≤ x1/(2h+1)

log x
≤ exp

(
log x

2e log log x+ c1
− log log x

)
,

where we can take c1 = 2ec0 + 1. Since 1/2e > 1/10, it follows that we may
choose

y = exp

(
log x

10 log log x

)
, (7)

in which case the inequality y2h+1 � x/(log x)2 holds for all x. With this
choice of y, we have that∏

p≤y

(
1− 1

p

)
� 1

log y
� log log x

log x
,

while the error terms in (5) and (6) are O(x/(log x)2). Thus, we have proved
that

S(A,P, y) = x
∏
p≤y

(
1− 1

p

)(
1 +O

(
1

log y

))
. (8)

Since
S(A,P, y) ≥ π(x)− π(y) ≥ π(x)− y ≥ π(x) +O(x1/2),

we immediately deduce that

π(x)� x1/2 + x
∏
p≤y

(
1− 1

p

)
� x log log x

log x
,

which, although much weaker than Chebyshev’s estimate, is remarkable be-
cause of the simplicity and generality of the argument.

To summarize, we have just proved the following result:

Theorem 2. Letting

Φ(x, y) = #{n ≤ x : p(n) > y},
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then, for y ≤ exp

(
log x

10 log log x

)
,

Φ(x, y) = x
∏
p≤y

(
1− 1

p

){
1 +O

(
1

log y

)}
.

3 Twin Primes

Now we expose another remarkable application of Brun’s pure sieve, namely
the fact that the sum of the reciprocal of the twin primes is convergent.

Proposition 1. Let J = {p : p and p+2 are both primes} and set J (x) =
#{p ≤ x : p ∈ J }. Then

J (x)� x(log log x)2

(log x)2
.

Proof. In Corollary 1, set A = {n(n+2) : n ≤ x}. Again, let P stand for the
set of all primes and let y be a parameter to be chosen later. To understand
#Ad, we look at

ρ(d) = #{0 ≤ n ≤ d− 1 : n(n+ 2) ≡ 0 (mod d)}.

Let us first show that ρ(d) is multiplicative. Indeed, if u and v are coprime
and c (mod uv) is some congruence class modulo uv such that n(n+ 2) ≡ 0
(mod uv), then certainly c (mod u) (c (mod v), respectively) is a congru-
ence class modulo u (modulo v, respectively) such that n(n + 2) ≡ 0
(mod u) (n(n + 2) ≡ 0 (mod v), respectively). Conversely, if a (mod u)
and b (mod v) are congruence classes for n modulo u and v which are solu-
tions to n(n+ 2) ≡ 0 (mod u) and n(n+ 2) ≡ 0 (mod v), respectively, then
by the Chinese Remainder Theorem, there exists a class c (mod uv) (which
is unique) such that c ≡ a (mod u) and c ≡ b (mod v). Hence, n(n+2) ≡ 0
(mod u) and n(n+ 2) ≡ 0 (mod v), and since u and v are coprime, we get
that n(n+ 2) ≡ 0 (mod uv). This shows that ρ(uv) = ρ(u)ρ(v). Note that
ρ(2) = 1, ρ(4) = 2, ρ(2k) = 4 for k ≥ 3 and ρ(pk) = 2 if p > 2 is odd. In
particular, if d is squarefree, then ρ(d) = 2ω(d) if d is odd and ρ(d) = 2ω(d)−1

if d is even. Since there are precisely ρ(d) solutions n to the congruence
n(n+2) ≡ 0 (mod d) in any interval of length d, and since the interval [1, x]
is made up of bx/dc intervals of length d and (maybe) one shorter interval,
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we get that

Ad = #{n ≤ x : d | n(n+ 2)} = ρ(d)
(⌊x
d

⌋
+O(1)

)
=

xρ(d)

d
+O(ρ(d)) =

xρ(d)

d
+O(2ω(d)).

Upon noting that if p, p + 2 are twin primes, then either p ≤ y or p ∈
S(A,P, y), we have, by Corollary 1, that

J (x) ≤ π(y) +
∑

d |P (y)
ω(d)≤2h

µ(d)Ad

=
∑

d |P (y)
ω(d)≤2h

µ(d)

(
xρ(d)

d
+O(2ω(d))

)
+O(y)

= x
∑

d |P (y)
ω(d)≤2h

µ(d)ρ(d)

d
+O

y +
∑

d |P (y)
ω(d)≤2h

2ω(d)



= x
∑

d |P (y)

µ(d)ρ(d)

d
+O

y + 22h
∑

d |P (y)
ω(d)≤2h

1 + x
∑

d |P (y)
ω(d)>2h

2ω(d)

d



= x
∏
p≤y

(
1− ρ(p)

p

)
+O

y + 22h
∑

d |P (y)
ω(d)≤2h

1 + x
∑

d |P (y)
ω(d)>2h

2ω(d)

d



=
x

2

∏
3≤p≤y

(
1− 2

p

)
+O

y + (2y)2h + x
∑

d |P (y)
ω(d)>2h

2ω(d)

d

 . (9)

Using the combinatorial fact that

∑
d |P (y)
ω(d)>2h

2ω(d)

d
≤
∑
k>2h

∑
d |P (y)
ω(d)=k

2k

d
≤
∑
k>2h

1

k!

∑
p≤y

2

p

k

,
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together with Mertens’ formula and the weak Stirling estimate, we get

∑
d |P (y)
ω(d)>2h

2ω(d)

d
<
∑
k>2h

1

k!
(2 log log x+ 2c0)

k <
∑
k>2h

(
2e log log x+ c1

k

)k
,

where c1 = 2ec0. Hence, we see that if we choose h to be twice as large as in
the proof of Theorem 2, that is, the minimal positive integer h larger than
2e log log x+ c1, we then get

∑
d |P (y)
ω(d)>2h

2ω(d)

d
<

1

22h

∑
l≥0

1

2l

 =
2

22h
� 1

(log x)4e log 2
<

1

(log x)2
. (10)

Choosing y = exp(log x/(20 log log x)), we obtain that

(2y)2h < 22h exp

(
2h log x

20 log log x

)
= exp

(
(1 + o(1))4e log x

20

)
� x

(log x)2
.

(11)
Inserting estimates (10) and (11) into (9), we get

J (x)� x
∏
p≤y

(
1− 2

p

)
+

x

(log x)2
.

Finally, using Problem 7 of Lecture 2 with κ = −2, we have that

∏
p≤y

(
1− 2

p

)
=

c2
(log y)2

(1 + o(1)) = c2

(
20 log log x

log x

)2

(1 + o(1))

= (1 + o(1))
400c2(log log x)2

(log x)2
,

so that

J (x)� x(log log x)2

(log x)2
,

which is what we wanted to prove.

Corollary 2. The series ∑
p, p+2 primes

1

p
<∞.
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Proof. Since

J (n)− J (n− 1) =

{
1 if n and n+ 2 are both primes,
0 otherwise,

then, in light of Proposition 1,

∑
p,p+2 primes

1

p
=

∞∑
n=2

J (n)− J (n− 1)

n
=
∞∑
n=1

J (n)

(
1

n
− 1

n+ 1

)

=
∞∑
n=1

J (n)

n(n+ 1)
�

∞∑
n≥e

n(log log n)2

(log2 n)n(n+ 1)

<
∞∑
n≥e

(log log n)2

n(log n)2
�
∫ ∞
e

(log log t)2

t log2 t
dt <∞,

as requested.
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