Lecture 4

January 11, 2018

1 The Möbius function

One of the important functions in analytic number theory is the Möbius function, which we now introduce.

Definition 1. The Möbius function $\mu : \mathbb{Z}^+ \to \{-1, 0, 1\}$ is given by $\mu(1) = 1$, $\mu(n) = (-1)^r$ if n is a product of r distinct primes and $\mu(n) = 0$ otherwise.

In particular, $\mu(12) = 0$, $\mu(15) = 1$ and $\mu(30) = -1$. Notice that if $\sigma > 1$ then

$$\frac{1}{\zeta(s)} = \prod_{p \ge 2} \left(1 - \frac{1}{p^s} \right) = \sum_{n=1}^{\infty} \frac{\mu(n)}{n^s}.$$
 (1)

We summarize the most important properties of the Möbius function in the following theorem. Properties (ii) and (iii) below are usually referred to as *Möbius inversion formulas*.

Theorem 1. (i) Let $n \in \mathbb{Z}^+$. Then

$$\sum_{k|n} \mu(k) = \begin{cases} 1 & \text{if } n = 1, \\ 0 & \text{otherwise,} \end{cases}$$

(ii) Let $f : \mathbb{R}^+ \longrightarrow \mathbb{C}$ and define $F : \mathbb{R}^+ \longrightarrow \mathbb{C}$ by

$$F(x) = \sum_{n \le x} f\left(\frac{x}{n}\right).$$

Then

$$f(x) = \sum_{n \le x} \mu(n) F\left(\frac{x}{n}\right).$$

(iii) Let $f : \mathbb{Z}^+ \longrightarrow \mathbb{C}$ and define $F : \mathbb{Z}^+ \longrightarrow \mathbb{C}$ by

$$F(n) = \sum_{d|n} f(d).$$

Then

$$f(n) = \sum_{d|n} \mu(d) F\left(\frac{n}{d}\right).$$

Proof. (i) If n = 1, the result is obvious. Assume now that n > 1. Let $n = p_1^{\ell_1} \cdots p_r^{\ell_r}$ where p_1, \ldots, p_r are distinct primes and ℓ_1, \ldots, ℓ_r are positive integers. Let $m = p_1 \cdots p_r$. Then

$$\sum_{k|n} \mu(k) = \sum_{k|m} \mu(k).$$

But note that

$$\sum_{k|m} \mu(k) = 1 - \binom{r}{1} + \binom{r}{2} - \dots + (-1)^r \binom{r}{r} = 0.$$

(ii) By (i),

$$f(x) = \sum_{n \le x} \left(\sum_{k \mid n} \mu(k) \right) f\left(\frac{x}{n}\right) = \sum_{k \le x} \mu(k) f\left(\frac{x}{k\ell}\right)$$
$$= \sum_{k \le x} \mu(k) \left(\sum_{\ell \le x/k} f\left(\frac{x}{\ell k}\right) \right) = \sum_{k \le x} \mu(k) F\left(\frac{x}{k}\right).$$

(iii) Again by (i),

$$f(n) = \sum_{c \mid n} \left(\sum_{d \mid (n/c)} \mu(d) \right) f(c) = \sum_{cd \mid n} \mu(d) F(c)$$
$$= \sum_{d \mid n} \mu(d) \sum_{c \mid (n/d)} f(c) = \sum_{d \mid n} \mu(d) F\left(\frac{n}{d}\right).$$

2 A theorem of D.J. Newman

Theorem 2. Suppose that $a_n \in \mathbb{C}$ with $|a_n| \leq 1$ for $n = 1, 2, \ldots$ Form the series

$$\sum_{n\geq 1} \frac{a_n}{n^s}.$$
(2)

The series converges to a function F(s) which is holomorphic in $\operatorname{Re}(s) > 1$. Assume that it can be extended holomorphically to $\operatorname{Re}(s) \ge 1$. Then series (2) converges to F(s) for all complex numbers s with $\operatorname{Re}(s) \ge 1$.

It is not hard to prove that F(s) is holomorphic for $\operatorname{Re}(s) > 1$. In fact, not only does F(s) have a derivative but in fact

$$F'(s) = -\sum_{n \ge 1} \frac{a_n \log n}{n^s} \qquad \sigma > 1.$$

We leave this as homework. It is harder to prove that the representation given by (2) converges to F(s) even when $\operatorname{Re}(s) = 1$ assuming that F(s) can be extended holomorphically to a domain including the line $\sigma = 1$.

3 An application of Newman's theorem

For the purposes of today's lecture, we can use Newman's theorem to prove the following.

Theorem 3.

$$\sum_{n=1}^{\infty} \frac{\mu(n)}{n} = 0.$$
 (3)

Proof. For $\sigma > 1$, we have

$$\frac{1}{\zeta(s)} = \sum_{n=1}^{\infty} \frac{\mu(n)}{n^s}$$

It follows that $f(s) = (s-1)\zeta(s)$ is holomorphic in the region $\sigma > 0$ and that it has no zero in the region $\sigma \ge 1$. Hence, $1/\zeta(s)$ is holomorphic in the region $\sigma \ge 1$. In fact, its formula is

$$\frac{1}{\zeta(s)} = \frac{s-1}{s\left(1 - (s-1)\int_1^\infty \frac{\{x\}}{x^{s+1}} dx\right)}$$
(4)

when $\sigma \geq 1$. By Newman's Theorem 2, we have that $\sum_{n\geq 1} \frac{\mu(n)}{n}$ converges to $\frac{1}{\zeta(s)}$ for all s with $\sigma \geq 1$. In particular, it converges at s = 1 and now formula (4) implies the desired conclusion.

Theorem 4.

$$\sum_{n \le x} \mu(n) = o(x). \tag{5}$$

4 Homework

Solve the following problems.

Problem 1. Show that

$$\sum_{n=1}^{\infty} \frac{\mu(n)}{n^2} = \frac{\zeta(2)}{\zeta(4)}.$$

Can you generalize this formula?

Problem 2. Let $(a_n)_{n\geq 1}$ be some sequence of complex numbers such that $|a_n| \leq 1$ for all $n \geq 1$. Show that the series

$$\sum_{n=1}^{\infty} \frac{a_n}{n^s}$$

converges to a function F(s) which is holomorphic for $\sigma > 1$.

Problem 3. Let $\phi(n)$ be the Euler function which counts the number of positive integers $m \leq n$ which are coprime to n. Show that

(i)

$$\phi(n) = \sum_{d \mid n} \mu(d) \frac{n}{d}.$$

(ii) Deduce from (i) that $\phi(mn) = \phi(m)\phi(n)$ whenever m and n are coprime.

(iii)

$$\sum_{d \mid n} \phi(d) = n.$$

Problem 4. Let $f(X) \in \mathbb{Z}[X]$ be a non-constant polynomial with integer coefficients. Show that there exist infinitely many positive integers n such that $\mu(|f(n)|) = 0$.

Problem 5. A positive integer n is called square-full if $p^2 \mid n$ whenever p is a prime factor of n. Show that the formula

$$\sum_{\substack{n \ge 1 \\ n \text{ square-full}}} \frac{1}{n^s} = \frac{\zeta(2s)\zeta(3s)}{\zeta(6s)}$$

is valid for all $\sigma > 1/2$. (Hint: show that every powerful number n has a unique representation as $n = u^2 v^3$, where u and v are integers with v square-free).