Lecture 4

January 11, 2018

1 The Mobius function

One of the important functions in analytic number theory is the Mobius
function, which we now introduce.

Definition 1. The Mdbius function p : Z+t — {—1,0,1} is given by p(1) =
1, p(n) = (=1)" if n is a product of r distinct primes and p(n) = 0 other-
wise.

In particular, ©(12) = 0, p(15) = 1 and p©(30) = —1. Notice that if

o > 1 then
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We summarize the most important properties of the Mobius function in the
following theorem. Properties (ii) and (iii) below are usually referred to as
Mébius inversion formulas.

Theorem 1. (i) Let n € Z". Then
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(ii) Let f: RT — C and define F : R™ — C by
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(iii) Let f:ZT — C and define F : Z+ — C by

F(n) =Y f(d).
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Proof. (i) If n = 1, the result is obvious. Assume now that n > 1. Let
n= pfl ---p% where py, ..., p, are distinct primes and /1, ..., ¢, are positive
integers. Let m = p1---p,. Then
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(iii) Again by (i),
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2 A theorem of D.J. Newman

Theorem 2. Suppose that a,, € C with |a,| <1 forn =1, 2,.... Form the
series “
o, 2)
n>1
The series converges to a function F(s) which is holomorphic in Re(s) > 1.
Assume that it can be extended holomorphically to Re(s) > 1. Then series

(2) converges to F(s) for all complex numbers s with Re(s) > 1.

It is not hard to prove that F(s) is holomorphic for Re(s) > 1. In fact,
not only does F(s) have a derivative but in fact

F'(s) = —Zanlog" o> 1.
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We leave this as homework. It is harder to prove that the representation
given by (2) converges to F(s) even when Re(s) = 1 assuming that F(s)
can be extended holomorphically to a domain including the line o = 1.

3 An application of Newman’s theorem

For the purposes of today’s lecture, we can use Newman’s theorem to prove
the following.

Theorem 3.

> “2”) =0. (3)
n=1

Proof. For ¢ > 1, we have
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It follows that f(s) = (s — 1)((s) is holomorphic in the region ¢ > 0 and
that it has no zero in the region o > 1. Hence, 1/((s) is holomorphic in the
region o > 1. In fact, its formula is
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when o > 1. By Newman’s Theorem 2, we have that Zn21 un)
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formula (4) implies the desired conclusion. O

converges

to for all s with ¢ > 1. In particular, it converges at s = 1 and now

Theorem 4.
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4 Homework

Solve the following problems.

Problem 1. Show that
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Can you generalize this formula?

Problem 2. Let (an)n>1 be some sequence of complex numbers such that
lan| <1 for alln > 1. Show that the series
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converges to a function F(s) which is holomorphic for o > 1.

Problem 3. Let ¢(n) be the Euler function which counts the number of
positive integers m < n which are coprime to n. Show that
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(i) Deduce from (i) that ¢(mn) = ¢(m)d(n) whenever m and n are co-
prime.

(iii)
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Problem 4. Let f(X) € Z[X] be a non-constant polynomial with integer
coefficients. Show that there exist infinitely many positive integers n such

that (| f(n)]) = 0.



Problem 5. A positive integer n is called square-full if p* | n whenever p
is a prime factor of n. Show that the formula
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n square-full

is wvalid for all o > 1/2. (Hint: show that every powerful number n has

a unique representation as n = u?v3, where u and v are integers with v

square-free).



