
Lecture 4

January 11, 2018

1 The Möbius function

One of the important functions in analytic number theory is the Möbius
function, which we now introduce.

Definition 1. The Möbius function µ : Z+ → {−1, 0, 1} is given by µ(1) =
1, µ(n) = (−1)r if n is a product of r distinct primes and µ(n) = 0 other-
wise.

In particular, µ(12) = 0, µ(15) = 1 and µ(30) = −1. Notice that if
σ > 1 then

1

ζ(s)
=
∏
p≥2

(
1− 1

ps

)
=
∞∑
n=1

µ(n)

ns
. (1)

We summarize the most important properties of the Möbius function in the
following theorem. Properties (ii) and (iii) below are usually referred to as
Möbius inversion formulas.

Theorem 1. (i) Let n ∈ Z+. Then∑
k|n

µ(k) =

{
1 if n = 1,
0 otherwise,

(ii) Let f : R+ −→ C and define F : R+ −→ C by

F (x) =
∑
n≤x

f
(x
n

)
.

Then
f(x) =

∑
n≤x

µ(n)F
(x
n

)
.
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(iii) Let f : Z+ −→ C and define F : Z+ −→ C by

F (n) =
∑
d|n

f(d).

Then
f(n) =

∑
d|n

µ(d)F
(n
d

)
.

Proof. (i) If n = 1, the result is obvious. Assume now that n > 1. Let
n = p`11 · · · p`rr where p1, . . . , pr are distinct primes and `1, . . . , `r are positive
integers. Let m = p1 · · · pr. Then∑

k|n

µ(k) =
∑
k|m

µ(k).

But note that∑
k|m

µ(k) = 1−
(
r

1

)
+

(
r

2

)
− . . .+ (−1)r

(
r

r

)
= 0.

(ii) By (i),

f(x) =
∑
n≤x

∑
k |n

µ(k)

 f
(x
n

)
=
∑
k`≤x

µ(k)f
( x
k`

)

=
∑
k≤x

µ(k)

 ∑
`≤x/k

f
( x
`k

) =
∑
k≤x

µ(k)F
(x
k

)
.

(iii) Again by (i),

f(n) =
∑
c |n

 ∑
d | (n/c)

µ(d)

 f(c) =
∑
cd |n

µ(d)F (c)

=
∑
d |n

µ(d)
∑

c | (n/d)

f(c) =
∑
d |n

µ(d)F
(n
d

)
.
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2 A theorem of D.J. Newman

Theorem 2. Suppose that an ∈ C with |an| ≤ 1 for n = 1, 2, . . .. Form the
series ∑

n≥1

an
ns
. (2)

The series converges to a function F (s) which is holomorphic in Re(s) > 1.
Assume that it can be extended holomorphically to Re(s) ≥ 1. Then series
(2) converges to F (s) for all complex numbers s with Re(s) ≥ 1.

It is not hard to prove that F (s) is holomorphic for Re(s) > 1. In fact,
not only does F (s) have a derivative but in fact

F ′(s) = −
∑
n≥1

an log n

ns
σ > 1.

We leave this as homework. It is harder to prove that the representation
given by (2) converges to F (s) even when Re(s) = 1 assuming that F (s)
can be extended holomorphically to a domain including the line σ = 1.

3 An application of Newman’s theorem

For the purposes of today’s lecture, we can use Newman’s theorem to prove
the following.

Theorem 3.
∞∑
n=1

µ(n)

n
= 0. (3)

Proof. For σ > 1, we have

1

ζ(s)
=

∞∑
n=1

µ(n)

ns
.

It follows that f(s) = (s − 1)ζ(s) is holomorphic in the region σ > 0 and
that it has no zero in the region σ ≥ 1. Hence, 1/ζ(s) is holomorphic in the
region σ ≥ 1. In fact, its formula is

1

ζ(s)
=

s− 1

s
(
1− (s− 1)

∫∞
1
{x}
xs+1dx

) (4)
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when σ ≥ 1. By Newman’s Theorem 2, we have that
∑

n≥1
µ(n)
n converges

to 1
ζ(s) for all s with σ ≥ 1. In particular, it converges at s = 1 and now

formula (4) implies the desired conclusion.

Theorem 4. ∑
n≤x

µ(n) = o(x). (5)

4 Homework

Solve the following problems.

Problem 1. Show that
∞∑
n=1

µ(n)

n2
=
ζ(2)

ζ(4)
.

Can you generalize this formula?

Problem 2. Let (an)n≥1 be some sequence of complex numbers such that
|an| ≤ 1 for all n ≥ 1. Show that the series

∞∑
n=1

an
ns

converges to a function F (s) which is holomorphic for σ > 1.

Problem 3. Let φ(n) be the Euler function which counts the number of
positive integers m ≤ n which are coprime to n. Show that

(i)

φ(n) =
∑
d |n

µ(d)
n

d
.

(ii) Deduce from (i) that φ(mn) = φ(m)φ(n) whenever m and n are co-
prime.

(iii) ∑
d |n

φ(d) = n.

Problem 4. Let f(X) ∈ Z[X] be a non-constant polynomial with integer
coefficients. Show that there exist infinitely many positive integers n such
that µ(|f(n)|) = 0.
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Problem 5. A positive integer n is called square-full if p2 | n whenever p
is a prime factor of n. Show that the formula∑

n≥1
n square-full

1

ns
=
ζ(2s)ζ(3s)

ζ(6s)

is valid for all σ > 1/2. (Hint: show that every powerful number n has
a unique representation as n = u2v3, where u and v are integers with v
square-free).
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