
Lecture 3

January 9, 2018

1 Some complex analysis

Although you might have never taken a complex analysis course, you perhaps
still know what a complex number is. It is a number of the form

z = x+ iy,

where x and y are reals and i =
√
−1. The exponential function ez can be

defined in terms of its series

ez = 1 + z +
z2

2
+ · · ·+ zn

n!
+ · · · =

∑
n≥0

zn

n!
. (1)

More precisely, one can check, using the ratio test or the root test that the
series appearing in the right hand side converges absolutely for all complex
numbers z. Thus, this series defines a function which we denote by ez. When
z = x is real, we recognize in the right hand side of formula (1) the Taylor
expansion of the usual exponential function ex, so it coincides with it. When
z = iy, where y is real, we have

eiy =
∑
n≥0

(iy)n

n!
=
∑
k≥0

(iy)2k

(2k)!
+
∑
k≥0

(iy)2k+1

(2k + 1)!

=
∑
k≥0

(−1)k
y2k

(2k)!
+ i
∑
k≥0

(−1)k
y2k+1

(2k + 1)!
(2)

and in the right hand side of the last formula (2) we recognize the familiar
Taylor expansions of cos y and sin y. Thus, we get

eiy = cos y + i sin y.
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The exponential function on the real numbers has the important property
that ex+y = ex · ey. The same is true for the complex exponential function
since

ez1+z2 =
∑
n≥0

1

n!
(z1 + z2)

n =
∑
n≥0

1

n!

(
n∑
k=0

(
n

k

)
zk1z

n−k
2

)

=
∑
n≥0

n∑
k=0

zk1
k!

zn−k2

(n− k)!
=
∑
u≥0

∑
v≥0

zu1
u!

zv2
v!

=

∑
u≥0

zu1
u!

∑
v≥0

zv2
v!

 = ez1 · ez2 ,

where in the above calculations we used the binomial formula, the change
in the order of summation u = k, v = n − k (for all n ≥ 0 and 0 ≤ k ≤ n
whose inverse is k = u, n = u+v), as well as the fact that we can rearrange
the order of the terms anyway we want since the series we are working with
is absolutely convergent.

In particular,

ex+iy = ex · eiy = ex(cos y + i sin y).

If a > 0 is any real number, then we can use the fact that a = elog a and
thus define

az = e(log a)z.

If z = x+ iy, then

az = e(log a)(x+iy) = e(log a)x ei(log a)y = ax(cos(a log y) + i sin(a log y)).

In particular, |az| = ax.

2 The Riemann Zeta Function

We are now ready to define the Riemann zeta function. We will use Rie-
mann’s notations where s ∈ C is a complex number written as s = σ + it,
where σ and t are real numbers.

Definition 1. For s ∈ C with σ > 1, we define

ζ(s) =
∑
n≥0

1

ns
.
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The series
∑

n≥1
1
ns converges absolutely for σ > 1. Indeed, given N ∈ N,

we have ∣∣∣∣∣
N∑
n=1

1

ns

∣∣∣∣∣ ≤
N∑
n=1

1

|ns|
=

N∑
n=1

1

nσ
,

and the series

ζ(σ) =
∑
n≥1

1

nσ

is convergent for all σ > 1. Furthermore, we have the Euler product repre-
sentation ∏

p≥2

(
1− 1

ps

)−1
=

s∑
n≥1

1

ns
. (3)

To see the above formula, note that

1

1− z
= 1 + z + z2 + · · ·+ zn + · · · =

∞∑
n=0

zn

is valid for all complex numbers |z| < 1 (to prove it, note that if we stop

the sum at N we get 1−zN+1

1−z which tends to 1
1−z when N tends to infinity

because |z| < 1). Thus,

∏
p≥2

(
1− 1

ps

)−1
=
∏
p≥2

(
1 +

1

ps
+

1

p2s
+ · · ·

)
,

and if we expand the above product, then a typical term of it is

1

pα1s
1 · · · pαks

k

=
1

(pα1
1 · · · p

αk
k )s

,

and now the conclusion that the formula (3) holds follows from the Funda-
mental Theorem of Arithmetic.

Note that formula (3) allows us to give another proof that there are
infinitely many primes. Indeed, assume that there are only finitely many.

Then
∏
p≥2

(
1− 1

ps

)−1
is bounded as we let s tend to 1 from above on the

real line. However,
∑

n≥1
1
n is divergent, which is a contradiction. This

argument goes back to Euler.
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3 The Riemann Zeta Function when σ > 0

In the preceding section, we defined ζ(s) for all σ > 1. In this section, we
will extend this definition in a nice way (here, by nice we mean continuous,
differentiable, analytic, etc.) to a function defined for all s ∈ C with σ > 0
except for s = 1.

Theorem 1. The following formula

ζ(s) =
s

s− 1
− s

∫ ∞
1

(x− bxc)
xs+1

dx (4)

is valid for the Riemann Zeta function whenever s is a complex number with
σ > 1.

Proof. Let x be any positive real number. Use Abel’s summation formula
with an = 1 and f(t) = 1

ts . In this case, A(x) =
∑

n≤x an = bxc and we get
that ∑

n≤x

1

ns
=
bxc
xs

+ s

∫ x

1

buc
us+1

du.

Letting x→∞, we get

ζ(s) = 0 + s

∫ ∞
1

buc
us+1

= s

∫ ∞
1

(u− (u− buc)
us+1

du

= s

∫ ∞
1

du

us
− s

∫ ∞
1

(u− buc
us+1

du

= s

(
u1−s

s− 1

∣∣∣u=∞
u=1

)
− s

∫ ∞
1

(u− buc)
us+1

du

=
s

s− 1
− s

∫ ∞
1

x− bxc
xs+1

dx,

which is what we wanted to prove.

Note that the improper integral∫ ∞
1

x− bxc
xs+1

dx

converges absolutely for all σ > 0. Thus, we may just adopt formula (4) as
the definition of ζ(s), and then we see that the Riemann Zeta function can
be defined for all s ∈ C, s 6= 1 with σ > 0. In this domain, the function ζ(s)
is very nice. It is continuous and in fact even differentiable everywhere in
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the domain s ∈ C with σ > 0. There are ways to extend it to all the complex
numbers s 6= 1 in such a way that it remains continuous and differentiable,
but we shall not need this.

Being also a function of a complex variable which is differentiable ev-
erywhere for all s ∈ C with σ > 0 with s 6= 1, it is in fact analytic in this
domain. If you do have never seen this word, we will explain it in one of the
future lectures.

You might have heard of the Riemann Hypothesis. Here it is:

Conjecture 1. If ζ(s) = 0 for some s ∈ C with σ > 0 and s 6= 1, then
σ = 1/2.

It is easy to see that ζ(s) = ζ(s). In particular, if s is real so is ζ(s).
Thus, the complex zeros of ζ(s) with σ > 0 come in pairs consisting of
a zero and its conjugate. Thus, it suffices to look at those ones lying in
the part of the complex plane for which t ≥ 0. The Riemann Hypothesis
Conjecture 1 says that all zeros of the Riemann Zeta function with σ > 0
have σ = 1/2. It has been checked to be true for the first (i.e., those
with smallest t) 1, 500, 000, 000 zeros. It doesn’t look like it will be hard
to prove does it? Well, many tried and failed. If you prove it, not only do
you become famous, but you also cash in the prize of $1,000,000 offered by
the Clay Mathematical Institute for a proof this conjecture (check out the
web site the Clay Mathematical Institute). You get no money if you find a
counterexample.

For us, the two most important properties are the following. The first
one concerns the zeros of ζ(s).

Theorem 2. The function ζ(s) has no zeros with σ ≥ 1.

The second one concerns the derivative of ζ(s), as a function of a complex
variable.

Definition 2. Let f be a function defined everywhere in some open disk
D(z; δ) = {w : |w − z| < δ} centered at z of radius δ. Then f has a
derivative in z if

lim
h→0

f(z + h)− f(z)

h

exists. In this case, it is denoted f ′(z). If f has a derivative everywhere in
D(z, δ), then f is called holomorphic in D(z; δ).
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Example 1. We show here that the derivative of ez exists and is itself. For
this it suffices to show that for all fixed z, we have

lim
h→0

ez+h − ez

h
= ez.

Note that
ez+h − ez

h
− ez = ez

(
eh − 1

h
− 1

)
.

Since z is fixed, it suffices to prove that

lim
h→0

eh − 1

h
− 1 = 0. (5)

Assume |h| < 1. Then,

eh − 1

h
− 1 =

h

2!
+
h2

3!
+ · · ·+ hn−1

n!
+ · · · ,

so∣∣∣∣eh − 1

h
− 1

∣∣∣∣ ≤ |h|
∑
n≥2

|h|n−2

n!

 < |h|

∑
n≥0

1

n!

 = e|h|, |h| < 1, (6)

which clearly implies limit (5).

All rules that you know about derivatives apply here: product rule, sum
rule, chain rule, etc. We shall not mention them.

We now prove that ζ(s) has a derivative for all complex numbers s =
σ + it ∈ C, s 6= 1 with σ > 0.

Proposition 1. The function ζ(s) has a derivative for all complex numbers
s ∈ C, s 6= 1 with σ > 0.

We shall not prove this.
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