
Lecture 1

January 8, 2018

1 Primes

A prime number p is a positive integer which cannot be written as ab for some
positive integers a, b > 1. A prime p also have the property that if p | ab,
then p | a or p | b. This is a special property of the integers about which you
will learn in Algebraic Number Theory course. One of the central questions
in analytic number theory concerns counting primes. Euclid proved that
there are infinitely many primes. Do you know that proof? He assumes
that this is not so, therefore all the primes in the world form a finite set.
Let us assume that this set is

{p1, p2, . . . , pk}.

Then Euclid forms the number N = p1p2 · · · pk + 1. Because we have added
1 to the product p1 · · · pk, the number N cannot be a multiple of p1. Or
of p2. Or of any of p1, . . . , pk. However, since N is a positive integer, it
must be a product of some primes. This is the fundamental theorem of
arithmetic. Anyone of those primes dividing N is a prime number not in
the set {p1, p2, . . . , pk}. This shows that the set of primes is infinite.

Problem 1. Let pk be the kth prime. Deduce from Euclid’s proof that

pk ≤ 22
k−1

holds for all k ≥ 1.

So, now that we know that there are infinitely many primes, how do we
count them? One way is to let x be any positive number, and count the
number of primes p ≤ x. This number is called π(x). Thus,

π(x) =
∑
p≤x

1.

Problem 2. What is π(100)?
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2 Chebyshev’s estimates

In 1896, de la Vallée Poussin and Hadamard proved independently the Prime
Number Theorem. That is, they showed that

lim
x→∞

π(x)

x/ log x
= 1.

The result had been conjectured by Gauss.

Earlier, Chebyshev had established that

c1
x

log x
≤ π(x) ≤ c2

x

log x

for all x ≥ 10, where c1 = log(21/231/351/5/301/30) and c2 = 6c1/5. Here,
we prove something weaker by a method which is easier than Chebyshev’s.
The following proof is due to Erdős.

Theorem 1. For x ≥ 2,(
3 log 2

8

)
x

log x
< π(x) < (6 log 2)

x

log x
.

We shall need the following lemma.

Lemma 1. Let p be a prime and ep(n!) be the exponent at which p appears
in n!. Then

ep(n!) =
∑
k≥0

⌊
n

pk

⌋
.

Proof. Induction on n. The formula is clearly true if n = 1 (for all p).
Assume that it holds for n and write n + 1 = pum, where p - m. Then, by
the induction hypothesis,

ep((n+ 1)!) = ep(n!) + u =
u∑
k=1

(⌊
n

pk

⌋
+ 1

)
+
∑
k>u

⌊
n

pk

⌋
.

All is left to note is that⌊
n+ 1

pk

⌋
=

⌊
n

pk

⌋
+ 1 if 1 ≤ k ≤ u and

⌊
n+ 1

pk

⌋
=

⌊
n

pk

⌋
if k > u.
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Proof of Theorem 1. We first prove the lower bound on π(x). We start with
the observation that (

2n

n

)
=

(2n)!

(n!)2

∣∣∣ ∏
p<2n

prp (1)

if n > 1, where rp is that positive integer such that prp ≤ 2n < prp+1.
Indeed, to prove divisibility (1) note that the exponent at which p appears

in the binomial coefficient

(
2n

n

)
equals

ep((2n)!)− ep((n!)2) = ep((2n)!)− 2ep(n!) =
∑
k≥1

(⌊
2n

pk

⌋
− 2

⌊
n

pk

⌋)
.

Divisibility relation (1) follows now by observing that b2yc − 2byc ∈ {0, 1}
holds for all real numbers y (when is it zero and when is it 1?) together
with the fact that when k > rp, we have pk > 2n, therefore b2n/pkc = 0 for
such values of k.

Divisibility relation (1) certainly gives that(
2n

n

)
≤ (2n)π(2n).

On the other hand, since

(1 + 1)2n =
2n∑
k=0

(
2n

k

)
and since (

2n

n

)
≥
(

2n

k

)
holds for all k = 0, 1, . . . , 2n,

we get that (
2n

n

)
>

22n

2n+ 1
.

By induction, one checks that

22n

2n+ 1
> 2n holds for all n ≥ 3.

Hence, if n ≥ 3, we have

2n <
22n

2n+ 1
<

(
2n

n

)
< (2n)π(2n),
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which after taking logarithms becomes

π(2n) >
log(2n)

log 2n
=

log 2

2
· 2n

log(2n)
.

Assume now that x ≥ 8. Let n be that positive integer such that 2n ≤ x <
2n + 2. Note that n ≥ 3. Further, we have 2n > x − 2 ≥ 3x/4 (because
x ≥ 8). The function y 7→ y/ log y is increasing for y > e (to see this, study
the sign of its derivative!) and certainly 3x/4 ≥ 6 > e for x ≥ 8. Putting
together all the above we get that if x ≥ 8, then

π(x) ≥ π(2n) ≥ log 2

2
· 2n

log(2n)
≥ log 2

2
· 3x/4

log(3x/4)
>

3 log 2

8
· x

log x
,

which is the desired lower bound for x ≥ 8. You should now check by
yourself that it also holds for x ∈ [2, 8).

We now turn to the upper bound. Note that∏
n<p≤2n

p
∣∣∣ (2n

n

)
.

Thus, ∏
n<p≤2n

p < (1 + 1)2n = 22n,

which after taking logarithms leads to

π(2n) log n− π(n)(log(n/2) + log 2) < 2n log 2.

Hence,

π(2n) log n− π(n) log(n/2) < 2n log 2 + π(n) log 2 ≤ (3 log 2)n, (2)

where we used the obvious fact that π(n) ≤ n. Put f(n) = π(2n) log n and
notice that the inequality (2) above is

f(n)− f(n/2) < (3 log 2)n.

Let n = 2i for i = k, k − 1, . . . , 2. We then have

f(2k)− f(2k−1) < (3 log 2) 2k

f(2k−1)− f(2k−2) < (3 log 2) 2k−1

...

f(4)− f(2) < (3 log 2) 4 (3)
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Summing up inequalities (3), we get

π(2k+1) log(2k) = f(2k+1) = (3 log 2)(4 + 8 + . . .+ 2k) + f(2)

= (3 log 2)(4 + 8 + . . .+ 2k) + π(4) log 2

< (3 log 2)(1 + 4 + 8 + . . .+ 2k)

< (3 log 2) 2k+1,

so

π(2k+1) < (6 log 2)

(
2k

log(2k)

)
.

Now given x ≥ 2, choose k ≥ 1 such that 2k ≤ x < 2k+1. If x ≥ 4, then
k ≥ 2 so 2k ≥ 4 > e. Thus, 2k/ log(2k) ≤ x/ log x whenever x ≥ 4. We thus
get that

π(x) ≤ π(2k+1) < (6 log 2)

(
2k

log(2k)

)
< (6 log 2)

x

log x

for x ≥ 4. You should also check that the claimed inequality holds for all
x ∈ [2, 4).

3 Homework

Problem 3. Show that if 2n + 1 is prime then n is a power of 2.

Problem 4. Show that if 2n − 1 is prime then n is prime.

Problem 5. A positive integer n is pseudoprime to base 2 if n is composite
and the congruence 2n−1 ≡ 1 (mod n) holds. Let Fn = 22

n
+ 1 be the nth

Fermat number. Show that if k ≤ n1 < n2 < . . . < ns ≤ 2k, then Fn1 ·· · ··Fns

is either a prime or a base 2 pseudoprime. Deduce that there are infinitely
many base 2 pseudoprimes.

Problem 6. Show that (n−1)! ≡ −1 (mod n) if n is prime and n | (n−1)!
if n > 4 is composite. Use this to prove that

pn = 1 +
2n∑
m=1


 n

1 +
∑m

j=2

⌊
(j−1)!+1

j −
⌊
(j−1)!
j

⌋⌋
1/n

 .
Problem 7. Prove that

lcm[1, 2, , . . . , n] ≥ 2n

holds for all n ≥ 9.
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