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What the L?

M.N. Huxley (1992)

“What is an L-function? We know one when we see one!”

(D) an ordinary Dirichlet series
∑

a(n)/ns .
(E) an Euler product over primes.
(F) a continuation and a functional equation.

He noticed that some people split these up.
(E) becomes (E) and
(B) bounds for a(p) (Ramanujan Hypothesis)

(F) becomes (F) and
(C) continuation for all s and
(G) Gamma factors.

Is there an (A) connecting them? Arithmetic? Algebraic? Analytic?

Do ABCDEFG only occur for (H) Hermitian operator on a Hilbert
space?



Iwaniec-Kowalski definition

L(f , s) is an L-function if we have the following data and conditions:
(1) A Dirichlet series with Euler product of degree d ≥ 1,

L(f , s) =
∑
n≥1

λf (n)n−s =
∏
p

(
1− α1(p)p−s

)−1 · · · (1− αd(p)p−s
)−1

which is absolutely convergent for Re(s) > 1, with λf (1) = 1,
λf (n) ∈ C and αi (p) ∈ C with |αi (p)| < p for all p.
(2) A gamma factor

γ(f , s) = π−ds/2
d∏

j=1

Γ

(
s + κj

2

)
,

where κj are either real or conjugate pairs and Re (κj) > −1.
(3) An integer q(f ) ≥ 1, called the conductor of L(f , s) such that
αi (p) 6= 0 for p - q(f ) and 1 ≤ i ≤ d .
With all this, we have the complete L-function

Λ(f , s) = q(f )s/2γ(f , s)L(f , s) with Λ(f , s) = ε(f )Λ
(
f , 1− s

)
.



Selberg class: I

The Selberg class S is the set of all Dirichlet series

F (s) =
∞∑
n=1

a(n)

ns

absolutely convergent for Re(s) > 1 satisfying the following properties.
(1) analyticity.
(2) Ramanujan conjecture.
(3) Functional equation.
(4) Euler product.

Conjecture

The Selberg class consists only of automorphic L-functions.



Selberg class: II

(1) analyticity: (s − 1)mF (s) is an entire function of finite order for
some non-negative integer m.
(2) Ramanujan conjecture: a(1) = 1 and a(n)�ε n

ε for any ε > 0.
(3) Functional equation: put

Φ(s) = Qs
k∏

i=1

Γ (λi s + µi )F (s) = γ(s)F (s)

where Q and the λi ’s are real and positive, the µi ’s are complex with
non-negative real part, and ω ∈ C with |ω| = 1. Then

Φ(s) = ωΦ (1− s).



Selberg class: III

(4) Euler product: For Re(s) > 1,

F (s) =
∏

p,prime

Fp(s)

with

Fp(s) = exp

( ∞∑
n=1

b (pn)

pns

)
and, for some θ < 1/2,

b (pn) = O
(
pnθ
)
.



Selberg class: Examples

Riemann zeta-function.

Shifts L(s + iθ, χ) of Dirichlet L-functions for primitive characters χ
with θ ∈ R.

Dedekind zeta-functions to number fields, K , with [K : Q] = n.

L(s, χ) with a non-primitive character χ mod q, q 6= 1, is not in S.



Euler Products

(4) Euler product: For Re(s) > 1,

F (s) =
∏

p,prime

Fp(s) with Fp(s) = exp

( ∞∑
n=1

b (pn)

pns

)

and, for some θ < 1/2,

b (pn) = O
(
pnθ
)
.

The local factors, Fp, determine F .
Is there a weaker condition on the Euler Product that determines F?

Let F ,G ∈ S. If, for all but finitely many primes, p,
bF (pm) = bG (pm) for m = 1 and m = 2, then F = G .

Conjecture (Strong multiplicity one)

Let F ,G ∈ S. If, for all but finitely many primes, p, bF (p) = bG (p),
then F = G .



Selberg class structure: degree (I)

Definition

The degree of F ∈ S is defined by

dF = 2
f∑

j=1

λj .

Conjecture (Degree Conjecture)

For all F ∈ S, dF ∈ Z.

Kaczorowski, Perelli (2011): true for 0 ≤ dF ≤ 2.
Somewhat stronger:

Conjecture (Strong λ Conjecture)

Let F ∈ S. All λj appearing in the gamma-factors of the functional
equation can be chosen to be equal to 1/2.



Selberg class structure: degree (II)

Examples:

degree 0: constant function, F (s) = 1.

degree 1: the Riemann zeta-function
shifts L(s + iθ, χ) of Dirichlet L-functions for primitive characters ξ
with θ ∈ R.

degree n: Dedekind zeta-functions to number fields, K , with
[K : Q] = n.

Theorem (Riemann-von Mangoldt Formula)

If NF (T ) count (with multiplicities) the number of zeros of F ∈ S in
the rectangle 0 ≤ Re(s) ≤ 1 with |Im(s)| ≤ T . Then

NF (t) =
dF
π
T log(T ) + O(T ).



Selberg class structure: conductor

Definition

The conductor of F ∈ S is defined by

qF = (2π)dFQ2
∏
j

λ
2λj
j .

It provides some finer structure to functions of the same degree.

Conjecture

For all F ∈ S, qF ∈ Z.

Examples:

degree 1: qζ(s) = 1 and qL(s,χ) is the modulus of χ, if χ is primitive.

degree n: qζK (s) = |dK |.



Selberg class structure: primitive elements

S is multiplicatively closed.

A function F ∈ S is called primitive if F = F1F2 with F1,F2 ∈ S
implies that F1 ≡ 1 or F2 ≡ 1.

Every F ∈ S can be factored as a product of primitive elements.

Conjecture

Factorisation into primitives is unique in S.

Examples:
any element of the Selberg class of degree one is primitive.
Dedekind zeta-functions for cyclotomic fields ( 6= Q) are not primitive.



Selberg class structure: orthogonality

Recall ∑
p≤x

1/p = log log(x) + O(1).

Conjecture (SOC)

For any primitive functions F1 and F2,

∑
p≤x

aF1(p)aF2(p)

p
=

{
log log(x) + O(1) if F1 = F2,
O(1) otherwise.

SOC implies the following:

ζ is the only primitive function in S with a pole at s = 1

strong multiplicity one conjecture

unique factorisation

F (s) 6= 0 for Re(s) ≥ 1

Artin’s conjecture



G(rand) RH

Conjecture (Grand Riemann hypothesis (GRH))

The nontrivial zeros of members of the Selberg class lie on the critical
line 1/2 + it with t a real number.

The restriction to nontrivial zeros is important, because with
r1 + r2 − 1 > 0, we saw that for ζK (0) = 0.

Functional equation, but no Euler product:

L(s) =
1− iα

2
L(s, χ) +

1 + iα

2
L(s, χ)

where α =
(√

10− 2
√

5− 2
)
/
(√

5− 1
)
.

Euler product, but with θ = 1/2 allowed:(
1− 21−s

)
ζ(s) =

∞∑
n=1

(−1)n−1

ns
.

No Ramanujan hypothesis. Let χ be an odd primitive character.
G (s) = L(2s − 1/2, χ) and F (s) = G (s − δ)G (s + δ) for δ ∈ (0, 1/4).



Zeta functions and modular forms (I)

Michel mentioned connection between Riemann zeta function and
θ0(iz) for the Jacobi θ function

θ0(z) =
∑
n∈Z

exp
(
πin2z

)
.

If f (z) =
∑∞

n=0 a(n) exp(2πinz/λ) is a modular form, its L-function is

L(f , s) =
∞∑
n=1

a(n)n−s .

For θ0(z), λ = 2, an = 1 if n square and an = 0 otherwise. Then

L (θ0, s) =
∞∑
n=1

ann
−s = ζ(2s).

Key Point (Hecke’s Converse Theorem (1936))

We have a 1-to-1 correspondence between modular forms from the
“full modular group” with a growth condition and Dirichlet series.



Zeta functions and modular forms (II)

But there are other groups too. The congruence subgroups.

Weil (1967) found a converse theorem for these.

Theorem (Modularity)

For any elliptic curve E over Q, there exists a newform f of weight 2
for some congruence subgroup Γ0(N) such that LE (s) = L(f , s).

E.g., E : Y 2 = X 3 − X . ap = p + 1− |E (Z/pZ)|.
a5 = −2, a9 = −3, a13 = 6,. . . , so

f (z) = q − 2q5 − 3q9 + 6q13 + · · · , q = exp(2πiz).

This is a newform of weight 2 for the congruence subgroup Γ0(32).
LE (s) = L(f , s).



Zeta functions and modular forms (III)

So, we have two things . . .

Arithmetic L-functions
–described by Euler products,
–arithmetic meaning is clear,
–analytic properties are conjectural.

Automorphic L-functions
–described by Dirichlet series,
–analytic properties are clear,
–Euler product and arithmetic meaning are more mysterious.

Langlands Program

No!
There is just one thing. They are both the same.


