
Introduction to L-functions:
The Artin Cliffhanger. . .



Artin L-functions

Let K/k be a Galois extension of number fields, V a finite-dimensional
C-vector space and (ρ,V ) be a representation of Gal(K/k).
(unramified) If p ⊂ k is unramified in K and p ⊂ P ⊂ K , put

Lp(s, ρ) = det−1
(
IV − Nk/Q(p)−sρ (σP)

)
.

Depends only on conjugacy class of σP (i.e., only on p), not on P.
(general) If G acts on V and H subgroup of G , then

VH = {v ∈ V : h(v) = v , ∀h ∈ H} .

With ρ|
V

IP : Gal(K/k)→ GL
(
V IP

)
.

Lp(s, ρ) = det−1
(
I − Nk/Q(p)−sρ|

V
IP (σP)

)
.

Definition
For Re(s) > 1, the Artin L-function belonging to ρ is defined by

L(s, ρ) =
∏
p⊂k

Lp(s, ρ).



Artin’s Conjecture

Conjecture (Artin’s Conjecture)

If ρ is a non-trivial irreducible representation, then L(s, ρ) has an
analytic continuation to the whole complex plane.

We can prove meromorphic.
Proof.
(1) Use Brauer’s Theorem:

χ =
∑
i

ni Ind (χi ) ,

with χi one-dimensional characters of subgroups and ni ∈ Z.
(2) Use Properties (4) and (5).
(3) L (s, χi ) is meromorphic (Hecke L-function).
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A “formal” zeta function

Let Nm, m = 1, 2, . . . be a sequence of complex numbers.

Z (u) = exp

( ∞∑
m=1

Nmu
m

m

)
With some sequences, if we have an Euler product, this does look more
like zeta functions we have seen.
Let’s see how. . .



Local zeta function

Let F be a field and let f (x) ∈ F [x0, . . . , xn] be a homogeneous
polynomial (all monomials have same total degree).
Let Vf (F ) be the set of F -points in Pn(F ).
Let q = pr , then there is a unique field Fq containing Z/pZ.
For any positive integer m, there is a unique field Fqm containing Fq.
Let Nm be the number of points in Vf (Fqm).

Zf ,q(u) = exp

( ∞∑
m=1

|Vf (Fqm)| um

m

)
,

called the local or congruence zeta function of f .
More generally, we consider ZV ,q(u) for any variety V defined over Fq.



Examples

A single point: n = 1 and f = x1. Vf = {[1, 0]}, so Nm = 1 and

Zf ,q(u) = exp

( ∞∑
m=1

um

m

)
= exp (− log(1− u)) =

1
1− u

.

A projective line: n = 2 and f = x1.
Vf = {[f , 0, 1] : f ∈ Fqm} ∪ {[1, 0, 0]}, so Nm = qm + 1 and

Zf ,q(u) = exp

( ∞∑
m=1

(qu)m

m

)
exp

( ∞∑
m=1

um

m

)
=

1
(1− u)(1− qu)

.

Notice that both of these are rational functions of u.
There is a deep conjecture of Tate relating the order of the pole at
u = q−1 to the geometry of the hypersurface.



Example (Elliptic Curves)

Elliptic curve, E , defined over Fq:

ZE ,q(u) =
1− aE ,qu + qu2

(1− u)(1− qu)
,

where aE ,q = q + 1− N1.
Hasse: |aE ,q| ≤ 2

√
q.

Write 1− aE ,qu + qu2 = (1− αu)(1− (q/α)u).
Nm = qm + 1− αm − (q/α)m.
Special case: N1 = q + 1− α− q/α (so we can determine α from N1).
Thus from N1 we can obtain Nm for all m.
α is a quadratic imaginary algebraic number.

|α| = q1/2.

Isn’t 1/2 important for roots of other zeta functions too. . . ?



History

Artin: introduced these zeta functions. Hyperelliptic curves: y2 = f (x).
(1923) his thesis!! (no pressure. . . )

For many elliptic curves, he proved that |α| = q1/2.
An analogue of the Riemann hypothesis.

Hasse (1934):
This Riemann hypothesis holds for all elliptic curves.

Weil (1948):
Proved a generalisation for all nonsingular curves.
Weil did much more too, but first some other guy. . .
Fast Fourier transform, least squares, find lost asteroids,. . .
Gauss.



Weil

Weil proved the following for smooth projective curves, C, over Fq.

ZC,q(u) =
P(u)

(1− u)(1− qu)
,

where P(u) ∈ Z[u] with constant coefficient 1.
If C is the reduction mod p of a variety, C̃, over Q, then deg(P) = 2g ,
g is the genus (or Betti number) of C̃.

If α is a reciprocal root of P , then |α| = q1/2.

Key Point
The geometry of the object over the complex numbers is connected
with its arithmetic properties.



Weil Conjectures (1949)

V a non-singular n-dimensional projective algebraic variety over Fq.
(Rationality) ZV (u) is a rational function of u. More precisely,

P1(u) · · ·P2n−1(u)

P0(u) · · ·P2n(u)
,

where each Pi (u) ∈ Z[u] with P0(u) = 1− u, P2n(u) = 1− qnu, and

Pi (u) =
∏
j

(1− αi ,ju) for i = 1, . . . , 2n − 1.

(Riemann hypothesis) For all 1 ≤ i ≤ 2n − 1 and all j ,

|αi ,j | = qi/2

(Functional equation) Let E be the Euler characteristic of V .

ZV

(
q−nu−1

)
= ±q

nE
2 uEZV (u),

(Betti numbers) If V is a (good) reduction mod p of a non-singular
projective variety Ṽ defined over a number field, then the degree of Pi

is the i-th Betti number of the space of complex points of Ṽ .



Weil Conjectures (Status)

All proven!

(Rationality) Dwork (1959): rationality holds much more generally.
For any algebraic set. Non-singular condition not needed.
(Functional equation) Grothendieck (1965).
(Betti numbers) Grothendieck (1965).
(Riemann hypothesis) This was the hardest one.
Finally proven by Deligne in 1974.
Key motivation for modern development of algebraic geometry.



Euler Product (I)

Do what we do before with local factors.
E.g., recall that for a single point, Z (u) = 1/(1− u). So∏

p

Z
(
p−s
)

=
∏
p

(
1− p−s

)−1
= ζ(s).

So “strange” initial definition fits with our previous examples.
Restrict now to curves.

LC(s) =
ζ(s)ζ(s − 1)∏
p ZC,p (p−s)

=
∏
p

(
P
(
p−s
))−1

=
∏
p

(
1 + b1p

−s + · · ·+ b2gp
−2gs)−1

=
∏
p

(
1− α1,1p−s

)−1 · · · (1− α1,2gp−s)−1 .



Euler Product (ζ vs L vs . . . )

ζ: ζV (s) =
∏

p ZV ,p (p−s).

L-function: from Weil conjectures, ZV ,p(T ) is a product of terms.
For good primes,

Lp
(
H j(V ), s

)
= det

(
I − Frobpp

−s |H j(V )
)−1

j=0,. . . ,2n.

For bad primes,

Lp
(
H j(V ), s

)
= det

(
I − Frobpp

−s |H j(V )Ip
)−1

j=0,. . . ,2n.

L-function definition:

L
(
H j(V ), s

)
=
∏
p

Lp
(
H j(V ), s

)
j=0,. . . ,2n.

The connection between them:

ζV (s) =
2n∏
j=0

L
(
H j(V ), s

)(−1)j
.

For curves: we use LV (s) for L
(
H1(V ), s

)
.



Elliptic Curves: local zeta function

Elliptic curve, E , defined over Fq, with discriminant, ∆E :

ZE ,q(u) =
1− aE ,qu + qu2

(1− u)(1− qu)
.

E is an elliptic curve over Fq only if p - ∆E (good reduction).
p|∆E . Three kinds of bad reduction can happen.
(1) E mod q has a cusp (a double point with one tangent), so aE ,q = 0.
Also called additive reduction.
(2) E mod q has a node with a pair of tangents in Fq, so aE ,q = 1.
Also called split multiplicative reduction.
(3) E mod q has a node with a pair of tangents in a quadratic
extension of Fq, so aE ,q = −1.
Also called nonsplit multiplicative reduction.
For any bad reduction, we have

ZE ,q(u) =
1− aE ,qu

(1− u)(1− qu)
.



Elliptic Curves: Hasse-Weil L-function

Hasse-Weil L-function:

LE (s) =
∏
p|∆E

(
1− aE ,pp

−s)−1 ∏
p-∆E

(
1− aE ,pp

−s + pp−2s
)−1

Exercise: LE (s) converges and is analytic for all Re(s) > 3/2.

Conjecture

Let E be an elliptic curve defined over any number field K . LE (s) has
an analytic continuation to the entire complex plane and satisfies a
functional equation relating its values at s and 2− s.

Eichler and Shimura (independently) proved that this is true for elliptic
curves defined over Q with a “modular parametrisation”.

Theorem (Modularity Theorem, Wiles and others)

Every elliptic curve defined over Q has a modular parametrisation.

The conjecture holds for all elliptic curves defined over Q.



Elliptic Curves: Functional equation

Let E be an elliptic curve defined over Q.
Complete L-function

ΛE (s) = N
s/2
E (2π)−sΓ(s)︸ ︷︷ ︸

local factor at infinity

LE (s),

NE ∈ Z is the conductor – a more refined version of discriminant.
ΛE (s) is an entire function satisfying

ΛE (s) = wΛE (2− s),

where w = ±1 is the sign of the functional equation.
Parity conjecture: w determines the parity of ords=1 (LE (s)).



Birch Swinnerton-Dyer: Statement

Tate (1974)

This remarkable conjecture relates the behavior of a function L at a
point where it is not at present known to be defined to the order of a
group Ш which is not known to be finite!

Conjecture (Birch Swinnerton-Dyer)

Let E be an elliptic curve over Q.
(a) LE (s) has a zero at s = 1 of order equal to the rank, r , of E (Q).
(b)

lim
s→1

LE (s)

(s − 1)r
=

2r |Ш|R
|Etors(Q)|2

(local factors).

Ш – Tate-Shafarevich group, an analogue of the ideal class group.
The obstruction group to local-global principle.
R – the elliptic regulator.



Birch Swinnerton-Dyer: Status

Known results for elliptic curves over Q:

LE (1) 6= 0 =⇒ rank(E (Q)) = 0,
LE (1) = 0 and L′E (1) 6= 0 =⇒ rank(E (Q)) = 1.

Kolyvagin and Gross-Zagier (plus modularity).
Bhargava and Shanker: average rank ≤ 0.885.
Bhargava, Skinner, Zhang: B-SD(a) is true for > 66% of elliptic curves.
conjecture: 50% of curves have rank 0 and 50% have rank 1.

Conjecture

All but finitely many E/Q have rank at most 21.
All E/Q have rank at most 28.


