Introduction to *L*-functions: Dedekind zeta functions

Paul Voutier

CIMPA-ICTP Research School, Nesin Mathematics Village June 2017

Definition

Let *K* be a number field. We define for Re(s) > 1 the **Dedekind zeta** function $\zeta_K(s)$ of *K* by the formula

$$\zeta_{\mathcal{K}}(s) = \sum_{\mathfrak{a}} \left(\mathsf{N}_{\mathcal{K}/\mathbb{Q}}(\mathfrak{a}) \right)^{-s},$$

where the sum is over all non-zero integral ideals, \mathfrak{a} , of $\mathcal{O}_{\mathcal{K}}$.

• Euler product exists:

$$\zeta_{\mathcal{K}}(s) = \prod_{\mathfrak{p}} \left(1 - \left(\mathsf{N}_{\mathcal{K}/\mathbb{Q}}(\mathfrak{p}) \right)^{-s}
ight)^{-1},$$

where the product extends over all prime ideals, \mathfrak{p} , of $\mathcal{O}_{\mathcal{K}}$.

Proposition

For any $s = \sigma + it \in \mathbb{C}$ with $\sigma > 1$, $\zeta_{\mathcal{K}}(s)$ converges absolutely.

Proof:

$$|\zeta_{\mathcal{K}}(s)| = \left|\prod_{\mathfrak{p}} \left(1 - \left(\mathsf{N}_{\mathcal{K}/\mathbb{Q}}(\mathfrak{p})\right)^{-s}\right)^{-1}\right| \leq \prod_{p} \left(1 - \frac{1}{p^{\sigma}}\right)^{-n} = \zeta(\sigma)^{n},$$

since there are at most $n = [K : \mathbb{Q}]$ many primes \mathfrak{p} lying above each rational prime p and $\mathbf{N}_{K/\mathbb{Q}}(\mathfrak{p}) \ge p$.

A reminder of some algebraic number theory

- If $[K : \mathbb{Q}] = n$, we have n embeddings of K into \mathbb{C} . r_1 embeddings into \mathbb{R} and $2r_2$ embeddings into \mathbb{C} , where $n = r_1 + 2r_2$. We will label these $\sigma_1, \ldots, \sigma_{r_1}, \sigma_{r_1+1}, \overline{\sigma_{r_1+1}}, \ldots, \sigma_{r_1+r_2}, \overline{\sigma_{r_1+r_2}}$.
- If $\alpha_1, \ldots, \alpha_n$ is a basis of \mathcal{O}_K , then

$$\mathit{d_{K}}=\left(\mathsf{det}\left(\sigma_{i}\left(lpha_{j}
ight)
ight)
ight)^{2}$$
 .

• Units in \mathcal{O}_K form a finitely-generated group of rank $r = r_1 + r_2 - 1$. Let u_1, \ldots, u_r be a set of generators. For any embedding σ_i , set $N_i = 1$ if it is real, and $N_i = 2$ if it is complex. Then

$$R_{\mathcal{K}} = \det\left(N_i \log |\sigma_i(u_j)|\right)_{1 \le i,j \le r}.$$

 w_K is the number of roots of unity contained in K.

• The ideal class group, I_K , is the quotient group J_K/P_K , with J_K the group of fractional ideals of \mathcal{O}_K , P_K its subgroup of principal ideals. Class number, h_K , is the size of the ideal class group.

Functional equation

- Riemann: $\xi(s) = \pi^{-s/2} s(s-1) \Gamma(s/2) \zeta(s)$ is entire and $\xi(s) = \xi(1-s).$
- The complete zeta function

$$\Lambda_{K}(s) = \underbrace{\left(\frac{|d_{K}|}{4^{r_{2}}\pi^{n}}\right)^{s/2} \Gamma^{r_{1}}(s/2)\Gamma^{r_{2}}(s)}_{\text{local factor at infinity}} \prod_{\mathfrak{p}} \underbrace{\left(1 - \left(\mathbf{N}_{K/\mathbb{Q}}(\mathfrak{p})\right)^{-s}\right)^{-1}}_{\text{local factor at }\mathfrak{p}}.$$

Then

$$\Lambda_{\mathcal{K}}(s) = \Lambda_{\mathcal{K}}(1-s).$$

• Unlike ξ , Λ_K has two simple poles at s = 0 and 1.

Theorem

 $\zeta_{\kappa}(s)$ has an analytic continuation to $\mathbb{C} \setminus \{1\}$ with a simple pole at s = 1.

- The residue at s = 1 of the Riemann zeta function is 1.
- Class number formula:

$$\lim_{s\to 1}(s-1)\zeta_K(s)=\frac{2^{r_1}(2\pi)^{r_2}h_KR_K}{\sqrt{|d_K|}w_K}.$$

- Proved by Dedekind.
- This should remind you of $L(s, \chi)$, when χ is a real primitive character. There's a reason why...

• Class number formula:

$$\operatorname{Res}_{s=1}\left(\zeta_{K}(s)\right) = \frac{2^{r_{1}}(2\pi)^{r_{2}}h_{K}R_{K}}{\sqrt{|d_{K}|}w_{K}}.$$

• Residue of a function on complex plane: purely analytic Right-hand side: purely arithmetic

Principle

Analytic objects can encode arithmetic information.

• Class number formula:

$$\operatorname{Res}_{s=1}\left(\prod_{\mathfrak{p}}\left(1-\left(\mathsf{N}_{K/\mathbb{Q}}(\mathfrak{p})\right)^{-s}\right)^{-1}\right)=\frac{2^{r_1}(2\pi)^{r_2}h_KR_K}{\sqrt{|d_K|}w_K}.$$

• "Local" objects on left-hand side "Global" information on right-hand side

Local-global principle

Local objects can encode global information.

• s = 0: a zero of order r (the rank of the unit group of $\mathcal{O}_{\mathcal{K}}$).

$$\lim_{s\to 0} s^{-r}\zeta_{\mathcal{K}}(s) = -\frac{h_{\mathcal{K}}R_{\mathcal{K}}}{w_{\mathcal{K}}}.$$

Special Values: Riemann recap

• Bernoulli numbers, B_k , defined by

۲

$$\frac{x}{e^x-1}=\sum_{k=0}^\infty B_k\frac{x^k}{k!}.$$

$$B_0 = 1, B_1 = -1/2, B_2 = 1/6, B_4 = -1/30, B_6 = 1/42, \dots$$

$$\zeta(2k) = (-1)^{k+1} \frac{B_{2k}(2\pi)^{2k}}{2(2k)!}.$$

 $\zeta(-k) = (-1)^k \frac{B_{k+1}}{k+1}.$

Note: $\zeta(-2k) = 0$ since $B_{2k+1} = 0$ for $k \ge 1$.

- $\zeta_{\mathcal{K}}(s)$ vanishes at all negative even integers.
- If K is not totally real (i.e., $r_2 \neq 0$), then $\zeta_K(-(2k+1)) = 0$.
- If K is totally real (i.e., $r_2 = 0$), then $\zeta_K(-(2k+1)) \in \mathbb{Q}^*$. In fact, $\zeta_K(2k) \in \pi^{2nk} \mathbb{Q}/\sqrt{D}$.
- From functional equation:

$$\operatorname{ord}_{s=-k}\zeta_{K}(s) = \begin{cases} r_1 + r_2 & \text{if } k \text{ is even} \\ r_2 & \text{if } k \text{ is odd.} \end{cases}$$

• $\zeta_{\mathcal{K}}(-k) = \mathsf{K}$ -theory quantities, higher regulators,...

Prime Ideal Theorem

Theorem (Landau, 1903)

Let
$$\pi_{K}(x) = |\{\mathfrak{p} \subset \mathcal{O}_{K} \text{ prime} : N_{K/\mathbb{Q}}(\mathfrak{p}) \leq x\}|$$
. We have
 $\pi_{K}(x) \sim \frac{x}{\log(x)}.$

- Surprising that the coefficient is 1 (no arithmetic of K!).
- Proof: via $\psi_K(x) = \sum_{N(\mathfrak{a}) \leq x} \Lambda_K(\mathfrak{a})$, where

$$\Lambda_{\mathcal{K}}(\mathfrak{a}) = \left\{egin{array}{cc} \log N(\mathfrak{p}) & ext{if } \mathfrak{a} = \mathfrak{p}^k, \ 0 & ext{otherwise}. \end{array}
ight.$$

Use

$$-rac{\zeta_{\mathcal{K}}'}{\zeta_{\mathcal{K}}}(s)=rac{1}{s-1}+ ext{higher terms}.$$

• $\zeta_{\mathcal{K}}(s)$ has no other zeros or poles with $\operatorname{Re}(s) = 1$.

Conjecture (Extended Riemann hypothesis (ERH))

The nontrivial zeros of the Dedekind zeta function of any algebraic number field lie on the critical line: $\operatorname{Re}(s) = 1/2$.

• $[K:\mathbb{Q}] = d$, $D = |\operatorname{disc}(K)|$ and c > 0. Then $\zeta_K(s)$ has no zero with

$$\operatorname{Re}(s) \geq 1 - \frac{c}{d^2 \log \left(D(|t|+3)^d \right)},$$

except possibly a simple real zero s < 1.

• $\mathcal{K} = \mathbb{Q}(\zeta_p)$: at most one zero (necessarily simple and real) satisfying

$$\operatorname{Re}(s) \geq 1 - \frac{c}{\log(p(|t|+3))}.$$

 Stark: If K has no quadratic subfield, then ζ_K(s) has no exceptional zero.

E.g., Quadratic Number Field

D squarefree, $\mathcal{K}=\mathbb{Q}\left(\sqrt{D}
ight)$ and $\chi_{d}(m)=(d_{\mathcal{K}}/m).$

$$\begin{aligned} \zeta_{\mathcal{K}}(s) &= \prod_{(d/p)=1} \left(1-p^{-s}\right)^{-2} \prod_{(d/p)=0} \left(1-p^{-s}\right) \\ &\times \prod_{(d/p)=-1} \left(1-p^{-s}\right)^{-1} \left(1+p^{-s}\right)^{-1} \\ &= \zeta(s) L(s, \chi_d). \end{aligned}$$

Dirichlet Characters

• Given a finite group, X, of Dirichlet characters, we can associate a number field, K, to X.

(1) Gal $(\mathbb{Q}(\zeta_m)/\mathbb{Q}) \cong (\mathbb{Z}/m\mathbb{Z})^{\times}$.

So a Dirichlet character mod *m* acts on $\operatorname{Gal}(\mathbb{Q}(\zeta_m)/\mathbb{Q})$. I.e.,

 $\chi : \operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{m}\right)/\mathbb{Q}\right) \to \operatorname{GL}_{1}(\mathbb{C})$ – a 1-dimensional Galois representation.

(2) Let n = lcm_{χ∈X}f_χ.
So X is a subgroup of the characters of Gal (Q (ζ_n)/Q).
(3) H = ∩_{χ∈X} ker χ. K be the fixed field of H.
Furthermore, X ≅ Gal(K/Q).

- Kronecker-Weber Theorem: all abelian extensions of Q lie inside cyclotomic fields.
- So for any abelian extension, K, of Q, we can associate a finite group of Dirichlet characters, X_K.

Theorem

Let X be a group of Dirichlet characters, K the associated field, and $\zeta_{K}(s)$ the Dedekind zeta function of K. Then

$$\zeta_{\mathcal{K}}(s) = \prod_{\chi \in X} L(\chi, s).$$

Corollary

If K is an abelian extension of \mathbb{Q} , then $\zeta_K(s)/\zeta(s)$ is an entire function.

Proof of theorem: compare the Euler factors for p on each side. Note that since K is a Galois extension

$$(p) = (\mathcal{P}_1 \cdots \mathcal{P}_g)^e$$

and each \mathcal{P}_i has residue class degree f.

A taste of some less simple algebraic number theory

Let K/k be a Galois extension of number fields with Galois group G.

- For each prime ideal \mathfrak{p} of k, let \mathfrak{P} be a prime ideal in K over \mathfrak{p} . Let $D_{\mathfrak{P}} = \{ \sigma \in G : \sigma(\mathfrak{P}) = \mathfrak{P} \}$ be the **decomposition group of** \mathfrak{P} .
- There is a surjective homomorphism D_𝔅 → Gal ((K/𝔅)/(k/𝔅)). Its kernel, I_𝔅, is the inertia group of 𝔅. If 𝔅 is unramified over 𝔅, then I_𝔅 is trivial.
- We have a Frobenius element σ_p ∈ D_p/l_p which is the inverse image of the Frobenius element of Gal ((K/p)/(k/p)).
 If P is unramified over p, then σ_p is a single element in D_p.
- Since Gal(K/k) is transitive on primes 𝔅 lying over 𝔅, all the Frobenius elements σ_𝔅 for 𝔅 over 𝔅 are conjugate.
 If Gal(K/k) is abelian, this conjugacy class for 𝔅 contains one single element, the Artin symbol.

Artin L-functions

- Let K/k be a Galois extension of number fields, V a finite-dimensional \mathbb{C} -vector space and (ρ, V) be a representation of $\operatorname{Gal}(K/k)$.
- (unramified) If $\mathfrak{p} \subset k$ is unramified in K and $\mathfrak{p} \subset \mathfrak{P} \subset K$, put

$$L_{\mathfrak{p}}(s,\rho) = \det^{-1} \left(I_{V} - \mathcal{N}_{k/\mathbb{Q}}(\mathfrak{p})^{-s} \rho\left(\sigma_{\mathfrak{P}}\right) \right).$$

Depends only on conjugacy class of $\sigma_{\mathfrak{P}}$ (i.e., only on \mathfrak{p}), not on \mathfrak{P} . • (general) If G acts on V and H subgroup of G, then

$$V^{H} = \{ v \in V : h(v) = v, \forall h \in H \}.$$

With $\rho|_{V^{h_{\mathfrak{P}}}} : \operatorname{Gal}(K/k) \to GL(V^{h_{\mathfrak{P}}}).$
 $L_{\mathfrak{p}}(s, \rho) = \det^{-1}(I - N_{k/\mathbb{Q}}(\mathfrak{p})^{-s}\rho|_{V^{h_{\mathfrak{P}}}}(\sigma_{\mathfrak{P}})).$

Definition

For $\operatorname{Re}(s) > 1$, the **Artin L-function** belonging to ρ is defined by

$$L(s,\rho)=\prod_{\mathfrak{p}\subset k}L_{\mathfrak{p}}(s,\rho).$$

Artin L-functions: Properties

(1) $L(s, \rho)$ converges absolutely and uniformly for $\operatorname{Re}(s) > 1$. (2) If (ρ, V) is the trivial representation, then

$$L(s,\rho)=\zeta_{K}(s).$$

(3) If $\chi_{\rho} : \operatorname{Gal}(K/k) \to \mathbb{C}$ is the character of (ρ, V) , then

 $L(s,\rho)=L(s,\chi_{\rho}).$

(4) If ρ_1 and ρ_2 are representations with characters χ_1 and χ_2 ,

$$L(s, \chi_1 + \chi_2) = L(s, \chi_1) L(s, \chi_2).$$

(5) If *H* is a subgroup of *G*, χ is a character of *H* and $Ind(\chi)$ is the character of *G* induced from χ

$$L(s, \operatorname{Ind}(\chi)) = L(s, \chi).$$

Conjecture (Artin's Conjecture)

If ρ is a non-trivial irreducible representation, then $L(s, \rho)$ has an analytic continuation to the whole complex plane.

- We can prove meromorphic.
- Proof.

(1) Use Brauer's Theorem:

$$\chi = \sum_{i} n_{i} \operatorname{Ind} (\chi_{i}),$$

with χ_i one-dimensional characters of subgroups and $n_i \in \mathbb{Z}$. (2) Use Properties (4) and (5). (3) $L(s, \chi_i)$ is meromorphic (Hecke L-function).