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Dedekind zeta function

Definition

Let K be a number field. We define for Re(s) > 1 the Dedekind zeta
function ζK (s) of K by the formula

ζK (s) =
∑
a

(
NK/Q(a)

)−s
,

where the sum is over all non-zero integral ideals, a, of OK .

Euler product exists:

ζK (s) =
∏
p

(
1−

(
NK/Q(p)

)−s)−1
,

where the product extends over all prime ideals, p, of OK .



Re(s) > 1

Proposition

For any s = σ + it ∈ C with σ > 1, ζK (s) converges absolutely.

Proof:

|ζK (s)| =

∣∣∣∣∣∏
p

(
1−

(
NK/Q(p)

)−s)−1
∣∣∣∣∣ ≤∏

p

(
1− 1

pσ

)−n
= ζ(σ)n,

since there are at most n = [K : Q] many primes p lying above each
rational prime p and NK/Q(p) ≥ p.



A reminder of some algebraic number theory

If [K : Q] = n, we have n embeddings of K into C.
r1 embeddings into R and 2r2 embeddings into C, where n = r1 + 2r2.
We will label these σ1, . . . , σr1 , σr1+1, σr1+1, . . . , σr1+r2 , σr1+r2 .

If α1, . . . , αn is a basis of OK , then

dK = (det (σi (αj)))2 .

Units in OK form a finitely-generated group of rank r = r1 + r2 − 1.
Let u1, . . . , ur be a set of generators. For any embedding σi , set
Ni = 1 if it is real, and Ni = 2 if it is complex. Then

RK = det (Ni log |σi (uj)|)1≤i ,j≤r .

wK is the number of roots of unity contained in K .

The ideal class group, IK , is the quotient group JK/PK , with JK the
group of fractional ideals of OK , PK its subgroup of principal ideals.
Class number, hK , is the size of the ideal class group.



Functional equation

Riemann: ξ(s) = π−s/2s(s − 1)Γ(s/2)ζ(s) is entire and

ξ(s) = ξ(1− s).

The complete zeta function

ΛK (s) =

(
|dK |
4r2πn

)s/2

Γr1(s/2)Γr2(s)︸ ︷︷ ︸
local factor at infinity

∏
p

(
1−

(
NK/Q(p)

)−s)−1

︸ ︷︷ ︸
local factor at p

.

Then
ΛK (s) = ΛK (1− s).

Unlike ξ, ΛK has two simple poles at s = 0 and 1.

Theorem

ζK (s) has an analytic continuation to C\{1} with a simple pole at
s = 1.



Special Values: s = 1 (what does 1 mean?)

The residue at s = 1 of the Riemann zeta function is 1.

Class number formula:

lim
s→1

(s − 1)ζK (s) =
2r1(2π)r2hKRK√

|dK |wK

.

Proved by Dedekind.

This should remind you of L(s, χ), when χ is a real primitive character.
There’s a reason why. . .



Class Number Formula I

Class number formula:

Ress=1 (ζK (s)) =
2r1(2π)r2hKRK√

|dK |wK

.

Residue of a function on complex plane: purely analytic
Right-hand side: purely arithmetic

Principle

Analytic objects can encode arithmetic information.



Class Number Formula II

Class number formula:

Ress=1

(∏
p

(
1−

(
NK/Q(p)

)−s)−1
)

=
2r1(2π)r2hKRK√

|dK |wK

.

“Local” objects on left-hand side
“Global” information on right-hand side

Local-global principle

Local objects can encode global information.



Special Values: s = 0

s = 0: a zero of order r (the rank of the unit group of OK ).

lim
s→0

s−rζK (s) = −hKRK

wK
.



Special Values: Riemann recap

Bernoulli numbers, Bk , defined by

x

ex − 1
=
∞∑
k=0

Bk
xk

k!
.

B0 = 1, B1 = −1/2, B2 = 1/6, B4 = −1/30, B6 = 1/42,. . .

ζ(2k) = (−1)k+1B2k(2π)2k

2(2k)!
.

ζ(−k) = (−1)k
Bk+1

k + 1
.

Note: ζ(−2k) = 0 since B2k+1 = 0 for k ≥ 1.



Special Values: s, a negative integer

ζK (s) vanishes at all negative even integers.

If K is not totally real (i.e., r2 6= 0), then ζK (−(2k + 1)) = 0.

If K is totally real (i.e., r2 = 0), then ζK (−(2k + 1)) ∈ Q∗.
In fact, ζK (2k) ∈ π2nkQ/

√
D.

From functional equation:

ords=−kζK (s) =

{
r1 + r2 if k is even
r2 if k is odd.

ζK (−k) = K-theory quantities, higher regulators,. . .



Prime Ideal Theorem

Theorem (Landau, 1903)

Let πK (x) =
∣∣{p ⊂ OK prime : NK/Q(p) ≤ x

}∣∣. We have

πK (x) ∼ x

log(x)
.

Surprising that the coefficient is 1 (no arithmetic of K !).

Proof: via ψK (x) =
∑

N(a)≤x ΛK (a), where

ΛK (a) =

{
logN(p) if a = pk ,
0 otherwise.

Use

−
ζ ′K
ζK

(s) =
1

s − 1
+ higher terms.

ζK (s) has no other zeros or poles with Re(s) = 1.



ERH

Conjecture (Extended Riemann hypothesis (ERH))

The nontrivial zeros of the Dedekind zeta function of any algebraic
number field lie on the critical line: Re(s) = 1/2.

[K : Q] = d , D = |disc(K )| and c > 0. Then ζK (s) has no zero with

Re(s) ≥ 1− c

d2 log (D(|t|+ 3)d)
,

except possibly a simple real zero s < 1.

K = Q (ζp): at most one zero (necessarily simple and real) satisfying

Re(s) ≥ 1− c

log (p(|t|+ 3))
.

Stark: If K has no quadratic subfield, then ζK (s) has no exceptional
zero.



E.g., Quadratic Number Field

D squarefree, K = Q
(√

D
)

and χd(m) = (dK/m).

p an odd prime
inert: (p) = p, if (dK/p) = −1,
ramified: (p) = p2, if (dK/p) = 0,
split: (p) = p1p2, if (dK/p) = 1.

p = 2
inert: (p) = p, if D ≡ 5 mod 8
ramified: (p) = p2, if D ≡ 2, 3, 6, 7 mod 8,
split: (p) = p1p2, if D ≡ 1 mod 8.

ζK (s) =
∏

(d/p)=1

(
1− p−s

)−2
∏

(d/p)=0

(
1− p−s

)
×

∏
(d/p)=−1

(
1− p−s

)−1 (
1 + p−s

)−1

= ζ(s)L (s, χd) .



Dirichlet Characters

Given a finite group, X , of Dirichlet characters, we can associate a
number field, K , to X .

(1) Gal (Q (ζm) /Q) ∼= (Z/mZ)×.
So a Dirichlet character mod m acts on Gal (Q (ζm) /Q). I.e.,

χ : Gal (Q (ζm) /Q)→ GL1(C) – a 1-dimensional Galois representation.

(2) Let n = lcmχ∈X fχ.
So X is a subgroup of the characters of Gal (Q (ζn) /Q).

(3) H = ∩χ∈X kerχ. K be the fixed field of H.
Furthermore, X ∼= Gal(K/Q).

Kronecker-Weber Theorem:
all abelian extensions of Q lie inside cyclotomic fields.

So for any abelian extension, K , of Q, we can associate a finite group
of Dirichlet characters, XK .



Zeta Function Factorisation

Theorem

Let X be a group of Dirichlet characters, K the associated field, and
ζK (s) the Dedekind zeta function of K. Then

ζK (s) =
∏
χ∈X

L(χ, s).

Corollary

If K is an abelian extension of Q, then ζK (s)/ζ(s) is an entire function.

Proof of theorem: compare the Euler factors for p on each side.
Note that since K is a Galois extension

(p) = (P1 · · · Pg )e

and each Pi has residue class degree f .



A taste of some less simple algebraic number theory

Let K/k be a Galois extension of number fields with Galois group G .

For each prime ideal p of k , let P be a prime ideal in K over p. Let
DP = {σ ∈ G : σ(P) = P} be the decomposition group of P.

There is a surjective homomorphism DP → Gal ((K/P)/(k/p)).
Its kernel, IP, is the inertia group of P.
If P is unramified over p, then IP is trivial.

We have a Frobenius element σP ∈ DP/IP which is the inverse image
of the Frobenius element of Gal ((K/P)/(k/p)).
If P is unramified over p, then σP is a single element in DP.

Since Gal(K/k) is transitive on primes P lying over p, all the
Frobenius elements σP for P over p are conjugate.
If Gal(K/k) is abelian, this conjugacy class for p contains one single
element, the Artin symbol.



Artin L-functions

Let K/k be a Galois extension of number fields, V a finite-dimensional
C-vector space and (ρ,V ) be a representation of Gal(K/k).

(unramified) If p ⊂ k is unramified in K and p ⊂ P ⊂ K , put

Lp(s, ρ) = det−1
(
IV − Nk/Q(p)−sρ (σP)

)
.

Depends only on conjugacy class of σP (i.e., only on p), not on P.

(general) If G acts on V and H subgroup of G , then

VH = {v ∈ V : h(v) = v ,∀h ∈ H} .

With ρ|
V

IP : Gal(K/k)→ GL
(
V IP

)
.

Lp(s, ρ) = det−1
(
I − Nk/Q(p)−sρ|

V
IP (σP)

)
.

Definition

For Re(s) > 1, the Artin L-function belonging to ρ is defined by

L(s, ρ) =
∏
p⊂k

Lp(s, ρ).



Artin L-functions: Properties

(1) L(s, ρ) converges absolutely and uniformly for Re(s) > 1.
(2) If (ρ,V ) is the trivial representation, then

L(s, ρ) = ζK (s).

(3) If χρ : Gal(K/k)→ C is the character of (ρ,V ), then

L(s, ρ) = L (s, χρ) .

(4) If ρ1 and ρ2 are representations with characters χ1 and χ2,

L (s, χ1 + χ2) = L (s, χ1) L (s, χ2) .

(5) If H is a subgroup of G , χ is a character of H and Ind(χ) is the
character of G induced from χ

L(s, Ind(χ)) = L (s, χ) .



Artin’s Conjecture

Conjecture (Artin’s Conjecture)

If ρ is a non-trivial irreducible representation, then L(s, ρ) has an
analytic continuation to the whole complex plane.

We can prove meromorphic.

Proof.
(1) Use Brauer’s Theorem:

χ =
∑
i

ni Ind (χi ) ,

with χi one-dimensional characters of subgroups and ni ∈ Z.
(2) Use Properties (4) and (5).
(3) L (s, χi ) is meromorphic (Hecke L-function).


