Introduction to L-functions Exercises CIMPA-ICTP, Nesin 2017

Paul Voutier

1 Lecture 1: Dirichlet L-functions

(1) Suppose that $0 < \alpha \leq 1$. For $\operatorname{Re}(s) > 1$, we define the Hurwitz zeta function by the formula

$$\zeta(s,a) = \sum_{n=0}^{\infty} (n+\alpha)^{-s}.$$

- (a) Show that $\zeta(s, 1/2) = (2^s 1)\zeta(s)$.
- (b) If χ is a character mod k

$$L(s,\chi) = k^{-s} \sum_{r=1}^{k} \chi(r)\zeta(s,r/k).$$

(2) Let G be a finite Abelian group.

(a) With multiplication of characters is defined by the relation $(\chi_1\chi_2)(g) = \chi_1(g)\chi_2(g)$, show that the set of characters, \hat{G} , of G forms an abelian group of order n.

What is the identity element of \widehat{G} ?

What is the inverse of χ in terms of χ ?

- (b) Prove that $G \cong \widehat{G}$.
- (c) Show that

$$\sum_{q \in G} \chi(g) = \begin{cases} |G| & \text{if } \chi \text{ is trivial (i.e., } \chi(g) = 1 \text{ for all } g \in G, \\ 0 & \text{otherwise.} \end{cases}$$

(d) Show that

$$\sum_{\chi \in \widehat{G}} \chi(g) = \begin{cases} |G| & \text{if } g \text{ is the identity in } G, \\ 0 & \text{otherwise.} \end{cases}$$

2 Lecture 2: Dedekind zeta functions

(1) Using the sketch from the lecture, complete the proof of the following statement:

Let X be a group of Dirichlet characters, K the associated field, and $\zeta_K(s)$ the Dedekind zeta function of K. Then

$$\zeta_K(s) = \prod_{\chi \in X} L(\chi, s).$$

If K is an abelian extension of \mathbb{Q} , then $\zeta_K(s)/\zeta(s)$ is an entire function.

(2) Let $\chi(n) = (5/n)$, the Kronecker symbol.

(a) Using a software package like Pari (the Ser() function will help), or packages like Sage or Maple, calculate $B_{k,\chi}$ for $k = 0, \ldots, 6$ and hence determine $L(-k,\chi)$ for $k = 0, \ldots, 5$.

(b) Using the factorisation of $\zeta_{\mathbb{Q}(\sqrt{5})}(s)$ and part (a), compute $\zeta_{\mathbb{Q}(\sqrt{5})}(-k)$ for $k = 0, \ldots, 5$.

(3) Let $\chi(n)$ be defined modulo 4 by $\chi(1) = 1$ and $\chi(3) = -1$.

The Galois group, G, of $\mathbb{Q}(i)$ is $\mathbb{Z}/2\mathbb{Z}$ is isomorphic to the group of characters generated by χ .

Let $V = \mathbb{C}$ and consider (χ, V) as a one-dimensional representation of G. Using the definition of the local factors of the Artin L-function, show that for p = 5, the Artin local factor, $L_5(s, \chi)$ is equal to the local factor for p = 5that arises in the Euler product of the Dirichlet L-function, $L(s, \chi)$.

3 Lecture **3**: Hasse-Weil *L*-functions

(1) The hyperplane at infinity is defined to be

 $\{[a_0, a_1, \dots, a_n] \in \mathbb{P}^n \left(\mathbb{F}_{q^m} \right) : a_0 = 0\}$

(a) Find the number of points on this hyperplane for any m, n and prime power q.

(b) Using the answer from part (a), find the local zeta function of this hyperplane.

(2) Prove that the product defining $L_E(s)$ converges and is analytic for all $\operatorname{Re}(s) > 3/2$.

Hint: use Hasse's Theorem that $|a_{E,q}| \leq 2\sqrt{q}$.

(3) Let $E: Y^2 = X^3 - X$.

(a) Using Pari, etc, calculate directly a_p for $p \leq 17$, p, prime.

Recall that $a_{p^e} = p^e + 1 - |E(\mathbb{F}_{p^e})|$, where we are counting all the points in \mathbb{P}^2 .

(b) Calculate a_n for all $n \leq 17$, using the facts that

(i) $a_{mn} = a_m a_n$ if gcd(m, n) = 1 and (ii) $a_{p^e} = a_p a_{p^{e-1}} - p a_{p^{e-2}}$.

(c) Compare your results from part (b) with the data in the LMFDB:

http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/32/2/1/a/

(d) Calculate a_9 directly by counting solutions.

If your result differs from the value you obtained in part (b), try to explain why.

4 Lecture 4: The Big Picture... we believe

(1) Suppose that $F \in S$ and let θ be a fixed real number. Show that if F(s) is regular at s = 1, then $F(s + i\theta)$ is also an element of S.

(2) It was stated in the lectures that the Dirichlet L-function for an imprimitive character is not in the Selberg class.

What conditions in the definition of the Selberg class fail for such L-functions?

(3) Show that Dedekind zeta-functions are elements of the Selberg class.

(4) Prove that the Selberg class is multiplicative.