Exercises for algebraic curves

Christophe Ritzenthaler

February 18, 2019

1 Exercise Lecture 1

1.1 Exercise

Show that V = {(x,y) € C?s.t. y =sinz} is not an algebraic set.
Solutions. Let us assume that V' is algebraic and let us consider its

intersection with the line Y = 0. This is also an algebraic set and consist of

infinitely many isolated points. Each point is an irreducible component but
one should be able to write VNV ((Y)) as a finite sum: contradiction.

1.2 Exercise
If V is a algebraic set and P ¢ V a point, show that there exists a polyno-
mial F' such that F(z) =0 for all z € V and F(P) = 1.

Solutions. Consider I = I(V) and J = I(V U {P}). Since VoI is
injective J C I. Consider Fy € I\ J. By definition Fy(z) =0 for all z € V
and F()(P) ;é 0. Let F = F()/FQ(P)

1.3 Exercise

1. Let F(z,y, z) be a homogeneous polynomial of degree d over a field k.
Show (Euler relation)

(hint: take partial derivative of F'(\z, Ay, A\z) = A\F(z,y, ) with re-
spect to A and then A = 1).

2. If d is coprime to the characteristic of k, show that the projective set
C : F =0 is singular at Py = (29 : 4o : 20) if and only if

<({;§(P0), gj(Po), g(Pﬂ)> = (0,0,0).



3. If Py is not singular, an equation of the tangent at P is

oF oF oF
il - —(Py)z = 0.
7 (Po)z + By (Po)y + 8Z( 0)z =0

4. Study the singularities of C;/C : y%z = 23 over C..

Solutions.

1. Derive the composition of g : A — (Az, Ay, Az) with F : (z,y,2) —
F(x,y,z). One has

O(F 0g)/O\ = (OF/0x,0F /0y, 0F/0z) - '(0OA\x/ON, OAx/ON, OAx /ON)
which gives the result. The second equality is straitforward.

2. Let choose an affine space containing the point. We can assume
that zop # 0. The point is singular if and only if 0F(z,y,z)/0z =
OF (z,y,2)/0y = 0 at (zo,y0,1). If it is so, then OF (z,y,2)/0z = 0
since F'(x0,y0,20) = 0. Conversely if at a point the three partial
derivative are zero, since d is not zero, then F' is zero and the point is
on the curve.

3. An affine equation of the tangent at (zg : yo: 1) is

OF/0x

~oF oy (20, %0, 1) (7 — 70).

Y—Yo =
Developing one gets
OF/0x(Py)x + OF |0y(Py)y — (x00F/0x(Py) + OF/dy(Py)yo) = 0.
The last term is 0F/0z(Py) en after homogenizing one gets the result.
4. The partial derivative are (—3x2,2yz,y?). The point (0: 0 : 1) is the

unique singularity.

1.4 Exercise
Let V be the projective variety defined by Y2Z — (X2 + Z3) = 0. Show that
themap ¢ : V — P2 given by (X : Y : Z) — (X2 : XY : Z?) is a morphism.

Solutions. The map is apparently not defined at P = (0 : 1 : 0). But

Z = %‘}2 (mod I(V)). So we get that

ot xv = (¥00 st ) = (07 )

and this last expression evaluate at P is (0:1:0).



1.5 Exercise

Show the following result:

If two projective plane curves Cy,Co of degree n intersect in exactly n?
points and that there exists a irreducible curve D of degree m < n contain-
ing mn of these points, then there exists a curve of degree at most n — m
containing the n(n — m) residual points.

To do so, let Fy, F5, G the equations of C1,Co and D and p=a:b: (|
be a point of D which is not in C; N Cy. Show that there exists a linear
combination of F; and F> containing p. Conclude using Bézout.

One can use this to prove the following corollary (Pascal mystical hexagon):
The opposite sides of a hexagon inside an irreducible conic meet in three
collinear points.

Figure 1: Pascal mystical hexagon

Solutions. We wish that aFi(a,b,c) + SFs(a,b,c) = 0 which is always

possible. Let R = aP, + 8P,. Since p is a point of D different from C; N Co,
R and D intersect in at least nm + 1 points. This is possible only if V(D)
has a common component with V/(R). As D is irreducible we get that G|R.
Let U = R/G. V(U) defines a curve of degree at most n —m and one can
check easily that U(q) = 0 for all ¢ € C1 N Ch.
Consider for C7 and C5 the two curves of degree 3 union of the 3 non-
adjacent sides and for V(D)the irreducible conic. The 9 intersection points
are the 6 points on the conic and the 3 intersection points of the opposite
sides. The previous result says that these 3 points are on a curve of degree
3—-2=1.



2 Exercise Lecture 2

2.1 Exercise

Let C = V(F) C P? be a dimension 1 affine variety over k. Let P € C be a
smooth point. We are going to show that k[C]p is a discrete valuation ring
and that if L = V(aX 4 bY + ¢) is any line through P which is not tangent
to C at P, then its image in k[C]p is a uniformizer at P

1. Show that by a change of variables we can assume that P = (0,0) that
Y =0 is the tangent at P and that L = V(X).

2. Show that Mp = (X,Y)

3. Show that F' = YG — X2H where G = a + higher terms with a # 0
and H € k[X].

4. Conclude that Mp = (X).

Solutions.

1. By a translation, we can assume that P = (0,0). Now given two
distinct line aX +bY = 0 and c¢X 4+ dY = 0 (the tangent), the matrix

[CCL Z] is invertible. This change of variables sends the two lines on
X=0and Y =0.

2. By definition Mp = {f € k[X,Y]/F s.t. f(P) = 0}. In particular
f(P) = 0 if and only if any representative in f € k[X,Y] is such
that f(0,0) =0, i.e. is in the ideal (X,Y, F'). By the correspondence
between the ideals of k[X,Y] and of k[X,Y]/F we see that Mp =

(X,Y).

3. This is equivalent to say that the lowest terms of F' is aY which is the
case since Y = 0 is the tangent.

4. G(P) # 0 so G ¢ Mp and is therefore invertible. We can write
Y = X2H/G so Mp = (X).

2.2 Exercise

Let ¢ : C1 — O3 be a non-constant morphism of curves and f € k(Cs)*, P €
C4. Prove that

ordp(¢*f) = ey(P) ordgpy(f)-
ordg(f)

Solutions. Locally around @ = ¢(P), we can write f = utq where
tg is a uniformizer at ) and u is non-zero at ). So

ordp(¢*f) = ordp(¢*u) +orde(f) - ordp(¢™tq) -
T W
=i =ey



2.3 Exercise

We give a proof of residue theoremE] in the case of C = P! over an alge-
braically closed field k.

1. Consider a rational fraction P(X)/Q(X). Show that one can write
P/Q as a sum of terms of the form ¢(X — a)™ with ¢ € k*,a € k and
n € Z. By linearity, one can restrict to one of these cases.

2. Show for each cases that the formula holds.

Solutions. Using partial fraction decomposition we can decompose P/Q
as a polynomial plus a sum of such terms. Now, these expressions are also a
basis for polynomials so we can express the polynomial in this basis as well.

A differential w = P/Qdt can be decomposed as a sum of (¢t —a)"dt. At
all affine points P = (b : 1) we have that (t—a)"dt = (t—b+(b—a)"d(t—b). If
b—a # 0 then w is regular at P and the residue is 0. When b =aandn = —1,
then the residue is 1. Now at P = (1 : 0), using that dt = —t2d(1/t), we see
that (t — a)"dt = —t"T2(1 — a/t)"d(1/t) which residue is 0 unless n = —1
and then the residue is —1. The formula is then proved.

3 Exercise Lecture 3

3.1 Exercise

Prove that a curve C' has genus 0 iff there exists two distinct points P, Q) € C
such that (P) ~ (Q).

Solutions. Let us assume that C has genus 0. By Riemann-Roch
theorem we get that for any P € C, {(P) = 2 (¢{(k — P) = 0 since this
is a negative degree divisor). This means that there exists a non-constant
function f such that P + div f > 0. Since f is non constant, it has a pole
and this must be P. As the degree of div f is zero it has only one zero Q).
This means that P — @ = div f hence (P) ~ (Q). Conversely, if this is the
case, then let us consider ¢ : C' — P! the morphism induced by f and h the
function x/z. From previous exercise, we get that

1 =ordp(f) = eg(P) - ord(g.1)(z/2),
—_—————

=1

hence ey(p) is 1. As P is the only point over (0 : 1) (since it is the only zero
of f), it means that deg¢ = 1 and it is therefore an isomorphism.

'For any differential w € Q¢ 3, Resp(w) = 0.


https://en.wikipedia.org/wiki/Partial_fraction_decomposition

3.2 [Exercise
Let ¢ : C1 — Cs a non-constant morphism between curves.
1. Show that gc, > gc,.

2. Prove that if there is equality then g = 0 or (g = 1 and ¢ is unramified)
or (g > 2 and ¢ is an isomorphism).

Solutions. The first item is a direct consequence of Riemann-Hurwitz
theorem since deg¢ > 0 and ) e4(P) —1 > 0. For the second item, we can
rewrite letting gc, = g0, = g

(29— 2)(1 —deg ) > Y e4(P) —1>0.

If 2g —2 > 0 d.e. g > 1 then this is possible only if deg¢ = 1 i.e. ¢ is an
isomorphism. If g = 1 then we get that ) e4(P) — 1 > 0 hence e4(P) = 1
for all P. The morphism ¢ is unramified.

3.3 Exercise

Let k£ be an algebraically closed field. Let C be a curve of genus go > 1
and G be the group of automorphisms of C'. It is known that this is always
a finite group. In the first part of this exercise, we are going to prove this
result when C' is hyperelliptic and the characteristic of k is different from 2.
We write C': Y2 = f(X) where f is of degree 2gc + 2 (a singular model
for C'). Recall that isomorphisms of hyperelliptic curves are of the form

aX +b eY
(X,Y
g ( ) )'_> <CX+d’(CX+d)g+1>
with M = [Z Z] € GLy(k) and e € k*. We denote g the induces automor-

phism of P! given by (X : Z) = (aX +bZ : cX +dZ) and we therefore have
a surjective morphism from G to G = {g, g € G}.

1. Show that the kernel of this morphism is generated by the hyperelliptic
involution ¢.

Hence in order to prove that G is finite, it is enough to prove that G is. Let
gea@qG.
2. Show that the 2g 4 2 points (z;,0) € C where z; are the roots of f are
the fixed points of &.
3. Show that g permutes the points Q; = (z; : 1).

4. Show that an automorphism of P! which fixes 3 distinct points is the
identity.



5. Conclude that there exists an injective morphism from G into Symag o
and that #G < 2(2g + 2)!.

6. Describe briefly how to compute the elements of G given a factorization

of f.

We now come back to the case where C' is not necessarily hyperelliptic
and we assume that G is finite. We assume also that the characteristic of k
does not divide #G = n.

We know that there exists a curve D/k and a morphism ¢ : C — D
separable of degree n such that for all Q € D, ¢~1(Q) = {g(P), g € G},
where P € C'is any point such that ¢(P) = @ (the curve D is the “quotient”
of C by G and in particular ¢ o g = ¢ for all g € G). Let P € C be a point
with ramification index e4(P) = r.

7. Show that ¢~!(¢(P)) consists of exactly n/r points, each of ramifica-
tion index r.

Let Py, ..., Ps be a maximal set of ramification points of C' lying over distinct
points of D and let e4(P;) = r;.

8. Show that Riemann-Hurwitz formula implies

29c — 2 u 1
— =2gp — 2 - —.
o gp — 2+ Z 1 .
=1
9. As go > 2, then the left side is > 0. Show that if gp > 0,5 >0,7; >0
are integers such that

S
1
ng—2+21—;>0
i=1 ¢

then the minimal value of this expression is 1/42.
10. Conclude that n < 84(gc — 1).
Solutions.

1. Clearly ¢ is in the kernel as it is the identity on the z-coordinate.
Conversely a map which is the identity on the z-coordinate is of the
form (z,y) — (z,ey). if we want to preserve C, we see that e = 1 so
this is the hyperelliptic involution.

2. The hyperelliptic involution is given by (z,y) — (x,—y) hence the
points such that y = 0 are fixed. Then these are the zeros of f. Note
that as the degree of f is even the points at infinity are not fixed by
the involution.



. Recall that an automorphism g commutes with the hyperelliptic invo-
lution ¢. Hence if P is a fixed point of ¢ then g¢(P) = g(P) = 1g(P) so
g(P) is a fixed point as well. This implies that g permutes the points

Qi-

. We know that an automorphism (z : 2) = (ax + bz : cx + dz) of P!
maps three points on any three points, so we can assume that these
three points are 0, loo. The first condition impose b = 0, the last one
d = 0 and the second one a = ¢ not equal to 0 so this is the identity.

. We have an action of any element of G on the points ();. This action
is faithful since there are more than 3 );. So the maps of G into
Symag42 is injective.

. We fix a choice of 3 roots of f and we consider the automorphism of
P! which sends them to any three other roots of f. We then check
that this automorphism maps also the remaining roots on other roots.
If this is the case we see that (cz + d)29T2f((ax +b)/(cx +d)) = o f
and we let e = y/a. We then get a list of all automorphisms in this
way.

. Let P and P’ be two points in the fiber. There exists ¢ € G such
that g(P) = P’. Since g is of degree 1 and so nowhere ramified
ordy(p) g Ytp =ordptp =1so g tp = vty(py where v is non zero

at g(P). Now by definition ¢*typ) = utif(P) so since ¢g = ¢,

* 1% % % 1% e, (P s or(P
Otary =9 B topy = g ug U = (g el

But ¢*typy = th?ég)(P)) so we get that e4(P’) = e4(P). Using Propo-
sition 3.2.1 allows to conclude that there are n/r such points in the
fiber.

. Riemann-Hurwitz formula says that 290 —2 = n(2gp—2)+3_ €4(P)—
1. The last sum can be group into fibers with index of ramification r;
S n

which appears n/r; times so we get 290 —2 = n(2gp—2)+ i, 7= (ri—
1). Dividing by n gets the result.

. Clearly if gp > 2 then the sum is greater than 2 > 1/42. If gp =1
since the sum is strictly positive, one of the r; > 1 so at least 2 and
the sum is greater than 1/2 > 1/42. So we can assume that gp = 0
so s —2 > > 1/r; and therefore s > 2. As soon as s > 5 then
the sum is greater than 1/2. So let us look at the cases s = 3 and
s = 4. For s = 4, we have 2 — > 1/r; which we want to be as small
as possible, so this gives (by a greedy algorithm we start with r; as
small as possible and increases keeping the condition of positivity),



2—-1/2—-1/2—-1/2—-1/3=1/6 > 1/42. In the case s = 3, we have
1-1/2-1/3—1/7=1/42.

10. We have seen that in all cases in the minimum is 1/42, so 2gc — 2 >
n/42 hence n < 84(gc — 1).
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