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1 Exercise Lecture 1

1.1 Exercise

Show that V = {(x, y) ∈ C2 s.t. y = sinx} is not an algebraic set.

Solutions. Let us assume that V is algebraic and let us consider its
intersection with the line Y = 0. This is also an algebraic set and consist of
infinitely many isolated points. Each point is an irreducible component but
one should be able to write V ∩ V ((Y )) as a finite sum: contradiction.

1.2 Exercise

If V is a algebraic set and P /∈ V a point, show that there exists a polyno-
mial F such that F (x) = 0 for all x ∈ V and F (P ) = 1.

Solutions. Consider I = I(V ) and J = I(V ∪ {P}). Since V ◦ I is
injective J ( I. Consider F0 ∈ I \ J . By definition F0(x) = 0 for all x ∈ V
and F0(P ) 6= 0. Let F = F0/F0(P ).

1.3 Exercise

1. Let F (x, y, z) be a homogeneous polynomial of degree d over a field k.
Show (Euler relation)

x
∂F

∂x
+ y

∂F

∂y
+ z

∂F

∂z
= d · F (x, y, z)

(hint: take partial derivative of F (λx, λy, λz) = λdF (x, y, z) with re-
spect to λ and then λ = 1).

2. If d is coprime to the characteristic of k, show that the projective set
C : F = 0 is singular at P0 = (x0 : y0 : z0) if and only if(

∂F

∂x
(P0),

∂F

∂y
(P0),

∂F

∂z
(P0)

)
= (0, 0, 0).
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3. If P0 is not singular, an equation of the tangent at P is

∂F

∂x
(P0)x+

∂F

∂y
(P0)y +

∂F

∂z
(P0)z = 0.

4. Study the singularities of C1/C : y2z = x3 over C..

Solutions.

1. Derive the composition of g : λ 7→ (λx, λy, λz) with F : (x, y, z) 7→
F (x, y, z). One has

∂(F ◦ g)/∂λ = (∂F/∂x, ∂F/∂y, ∂F/∂z) · t(∂λx/∂λ, ∂λx/∂λ, ∂λx/∂λ)

which gives the result. The second equality is straitforward.

2. Let choose an affine space containing the point. We can assume
that z0 6= 0. The point is singular if and only if ∂F (x, y, z)/∂x =
∂F (x, y, z)/∂y = 0 at (x0, y0, 1). If it is so, then ∂F (x, y, z)/∂z = 0
since F (x0, y0, z0) = 0. Conversely if at a point the three partial
derivative are zero, since d is not zero, then F is zero and the point is
on the curve.

3. An affine equation of the tangent at (x0 : y0 : 1) is

y − y0 = −∂F/∂x
∂F/∂y

(x0, y0, 1)(x− x0).

Developing one gets

∂F/∂x(P0)x+ ∂F/∂y(P0)y − (x0∂F/∂x(P0) + ∂F/∂y(P0)y0) = 0.

The last term is ∂F/∂z(P0) en after homogenizing one gets the result.

4. The partial derivative are (−3x2, 2yz, y2). The point (0 : 0 : 1) is the
unique singularity.

1.4 Exercise

Let V be the projective variety defined by Y 2Z− (X3 +Z3) = 0. Show that
the map φ : V → P 2 given by (X : Y : Z) 7→ (X2 : XY : Z2) is a morphism.

Solutions. The map is apparently not defined at P = (0 : 1 : 0). But

Z ≡ X3

Y 2−Z2 (mod I(V )). So we get that

(X2 : XY : Z2) =

(
X2 : XY :

X6

(Y 2 − Z2)2

)
=

(
X : Y :

X5

(Y 2 − Z2)2

)
and this last expression evaluate at P is (0 : 1 : 0).
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1.5 Exercise

Show the following result:

If two projective plane curves C1, C2 of degree n intersect in exactly n2

points and that there exists a irreducible curve D of degree m < n contain-
ing mn of these points, then there exists a curve of degree at most n −m
containing the n(n−m) residual points.

To do so, let F1, F2, G the equations of C1, C2 and D and p = [a : b : c]
be a point of D which is not in C1 ∩ C2. Show that there exists a linear
combination of F1 and F2 containing p. Conclude using Bézout.

One can use this to prove the following corollary (Pascal mystical hexagon):
The opposite sides of a hexagon inside an irreducible conic meet in three
collinear points.

Figure 1: Pascal mystical hexagon

Solutions. We wish that αF1(a, b, c) + βF2(a, b, c) = 0 which is always
possible. Let R = αP1 +βP2. Since p is a point of D different from C1∩C2,
R and D intersect in at least nm + 1 points. This is possible only if V (D)
has a common component with V (R). As D is irreducible we get that G|R.
Let U = R/G. V(U) defines a curve of degree at most n −m and one can
check easily that U(q) = 0 for all q ∈ C1 ∩ C2.
Consider for C1 and C2 the two curves of degree 3 union of the 3 non-
adjacent sides and for V (D)the irreducible conic. The 9 intersection points
are the 6 points on the conic and the 3 intersection points of the opposite
sides. The previous result says that these 3 points are on a curve of degree
3− 2 = 1.
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2 Exercise Lecture 2

2.1 Exercise

Let C = V (F ) ⊂ P 2 be a dimension 1 affine variety over k. Let P ∈ C be a
smooth point. We are going to show that k[C]P is a discrete valuation ring
and that if L = V (aX + bY + c) is any line through P which is not tangent
to C at P , then its image in k[C]P is a uniformizer at P

1. Show that by a change of variables we can assume that P = (0, 0) that
Y = 0 is the tangent at P and that L = V (X).

2. Show that MP = (X,Y )

3. Show that F = Y G − X2H where G = a + higher terms with a 6= 0
and H ∈ k[X].

4. Conclude that MP = (X).

Solutions.

1. By a translation, we can assume that P = (0, 0). Now given two
distinct line aX + bY = 0 and cX + dY = 0 (the tangent), the matrix[
a b
c d

]
is invertible. This change of variables sends the two lines on

X = 0 and Y = 0.

2. By definition MP = {f ∈ k[X,Y ]/F s.t. f(P ) = 0}. In particular
f(P ) = 0 if and only if any representative in f̃ ∈ k[X,Y ] is such
that f̃(0, 0) = 0, i.e. is in the ideal (X,Y, F ). By the correspondence
between the ideals of k[X,Y ] and of k[X,Y ]/F we see that MP =
(X,Y ).

3. This is equivalent to say that the lowest terms of F is aY which is the
case since Y = 0 is the tangent.

4. G(P ) 6= 0 so G /∈ MP and is therefore invertible. We can write
Y = X2H/G so MP = (X).

2.2 Exercise

Let φ : C1 → C2 be a non-constant morphism of curves and f ∈ k(C2)
∗, P ∈

C1. Prove that
ordP (φ∗f) = eφ(P ) ordφ(P )(f).

Solutions. Locally around Q = φ(P ), we can write f = ut
ordQ(f)
Q where

tQ is a uniformizer at Q and u is non-zero at Q. So

ordP (φ∗f) = ordP (φ∗u)︸ ︷︷ ︸
=0

+ ordQ(f) · ordP (φ∗tQ)︸ ︷︷ ︸
=eφ(P )

.

4



2.3 Exercise

We give a proof of residue theorem1 in the case of C = P 1 over an alge-
braically closed field k.

1. Consider a rational fraction P (X)/Q(X). Show that one can write
P/Q as a sum of terms of the form c(X − a)n with c ∈ k∗, a ∈ k and
n ∈ Z. By linearity, one can restrict to one of these cases.

2. Show for each cases that the formula holds.

Solutions. Using partial fraction decomposition we can decompose P/Q
as a polynomial plus a sum of such terms. Now, these expressions are also a
basis for polynomials so we can express the polynomial in this basis as well.

A differential ω = P/Qdt can be decomposed as a sum of (t− a)ndt. At
all affine points P = (b : 1) we have that (t−a)ndt = (t−b+(b−a)nd(t−b). If
b−a 6= 0 then ω is regular at P and the residue is 0. When b = a and n = −1,
then the residue is 1. Now at P = (1 : 0), using that dt = −t2d(1/t), we see
that (t − a)ndt = −tn+2(1 − a/t)nd(1/t) which residue is 0 unless n = −1
and then the residue is −1. The formula is then proved.

3 Exercise Lecture 3

3.1 Exercise

Prove that a curve C has genus 0 iff there exists two distinct points P,Q ∈ C
such that (P ) ∼ (Q).

Solutions. Let us assume that C has genus 0. By Riemann-Roch
theorem we get that for any P ∈ C, `(P ) = 2 (`(κ − P ) = 0 since this
is a negative degree divisor). This means that there exists a non-constant
function f such that P + div f ≥ 0. Since f is non constant, it has a pole
and this must be P . As the degree of div f is zero it has only one zero Q.
This means that P −Q = div f hence (P ) ∼ (Q). Conversely, if this is the
case, then let us consider φ : C → P 1 the morphism induced by f and h the
function x/z. From previous exercise, we get that

1 = ordP (f) = eφ(P ) · ord(0:1)(x/z)︸ ︷︷ ︸
=1

,

hence eφ(P ) is 1. As P is the only point over (0 : 1) (since it is the only zero
of f), it means that deg φ = 1 and it is therefore an isomorphism.

1For any differential ω ∈ ΩC
∑
P∈C ResP (ω) = 0.
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3.2 Exercise

Let φ : C1 → C2 a non-constant morphism between curves.

1. Show that gC1 ≥ gC2 .

2. Prove that if there is equality then g = 0 or (g = 1 and φ is unramified)
or (g ≥ 2 and φ is an isomorphism).

Solutions. The first item is a direct consequence of Riemann-Hurwitz
theorem since deg φ > 0 and

∑
eφ(P )− 1 ≥ 0. For the second item, we can

rewrite letting gC1 = gC2 = g

(2g − 2)(1− deg φ) ≥
∑

eφ(P )− 1 ≥ 0.

If 2g − 2 > 0 i.e. g > 1 then this is possible only if deg φ = 1 i.e. φ is an
isomorphism. If g = 1 then we get that

∑
eφ(P ) − 1 ≥ 0 hence eφ(P ) = 1

for all P . The morphism φ is unramified.

3.3 Exercise

Let k be an algebraically closed field. Let C be a curve of genus gC > 1
and G be the group of automorphisms of C. It is known that this is always
a finite group. In the first part of this exercise, we are going to prove this
result when C is hyperelliptic and the characteristic of k is different from 2.

We write C : Y 2 = f(X) where f is of degree 2gC + 2 (a singular model
for C). Recall that isomorphisms of hyperelliptic curves are of the form

g : (X,Y ) 7→
(
aX + b

cX + d
,

eY

(cX + d)g+1

)

with M =

[
a b
c d

]
∈ GL2(k) and e ∈ k∗. We denote g̃ the induces automor-

phism of P 1 given by (X : Z) 7→ (aX+ bZ : cX+dZ) and we therefore have
a surjective morphism from G to G̃ = {g̃, g ∈ G}.

1. Show that the kernel of this morphism is generated by the hyperelliptic
involution ι.

Hence in order to prove that G is finite, it is enough to prove that G̃ is. Let
g̃ ∈ G̃.

2. Show that the 2g+ 2 points (xi, 0) ∈ C where xi are the roots of f are
the fixed points of ι.

3. Show that g̃ permutes the points Qi = (xi : 1).

4. Show that an automorphism of P 1 which fixes 3 distinct points is the
identity.
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5. Conclude that there exists an injective morphism from G̃ into Sym2g+2

and that #G ≤ 2(2g + 2)!.

6. Describe briefly how to compute the elements ofG given a factorization
of f .

We now come back to the case where C is not necessarily hyperelliptic
and we assume that G is finite. We assume also that the characteristic of k
does not divide #G = n.

We know that there exists a curve D/k and a morphism φ : C → D
separable of degree n such that for all Q ∈ D, φ−1(Q) = {g(P ), g ∈ G},
where P ∈ C is any point such that φ(P ) = Q (the curve D is the “quotient”
of C by G and in particular φ ◦ g = φ for all g ∈ G). Let P ∈ C be a point
with ramification index eφ(P ) = r.

7. Show that φ−1(φ(P )) consists of exactly n/r points, each of ramifica-
tion index r.

Let P1, . . . , Ps be a maximal set of ramification points of C lying over distinct
points of D and let eφ(Pi) = ri.

8. Show that Riemann-Hurwitz formula implies

2gC − 2

n
= 2gD − 2 +

s∑
i=1

1− 1

ri
.

9. As gC ≥ 2, then the left side is > 0. Show that if gD ≥ 0, s ≥ 0, ri ≥ 0
are integers such that

2gD − 2 +

s∑
i=1

1− 1

ri
> 0

then the minimal value of this expression is 1/42.

10. Conclude that n ≤ 84(gC − 1).

Solutions.

1. Clearly ι is in the kernel as it is the identity on the x-coordinate.
Conversely a map which is the identity on the x-coordinate is of the
form (x, y) 7→ (x, ey). if we want to preserve C, we see that e2 = 1 so
this is the hyperelliptic involution.

2. The hyperelliptic involution is given by (x, y) 7→ (x,−y) hence the
points such that y = 0 are fixed. Then these are the zeros of f . Note
that as the degree of f is even the points at infinity are not fixed by
the involution.
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3. Recall that an automorphism g commutes with the hyperelliptic invo-
lution ι. Hence if P is a fixed point of ι then gι(P ) = g(P ) = ιg(P ) so
g(P ) is a fixed point as well. This implies that g̃ permutes the points
Qi.

4. We know that an automorphism (x : z) 7→ (ax + bz : cx + dz) of P 1

maps three points on any three points, so we can assume that these
three points are 0, 1∞. The first condition impose b = 0, the last one
d = 0 and the second one a = c not equal to 0 so this is the identity.

5. We have an action of any element of G̃ on the points Qi. This action
is faithful since there are more than 3 Qi. So the maps of G̃ into
Sym2g+2 is injective.

6. We fix a choice of 3 roots of f and we consider the automorphism of
P 1 which sends them to any three other roots of f . We then check
that this automorphism maps also the remaining roots on other roots.
If this is the case we see that (cx+ d)2g+2f((ax+ b)/(cx+ d)) = α · f
and we let e =

√
α. We then get a list of all automorphisms in this

way.

7. Let P and P ′ be two points in the fiber. There exists g ∈ G such
that g(P ) = P ′. Since g is of degree 1 and so nowhere ramified
ordg(P ) g

−1∗tP = ordP tP = 1 so g−1
∗
tP = vtg(P ) where v is non zero

at g(P ). Now by definition φ∗tφ(P ) = ut
eφ(P )
P so since φg = φ,

φ∗tφ(P ) = g−1
∗
φ∗tφ(P ) = g−1

∗
ug−1

∗
t
eφ(P )
P = (g−1

∗
uv)t

eφ(P )

g(P ) .

But φ∗tφ(P ) = wt
eφ(g(P ))

g(P ) so we get that eφ(P ′) = eφ(P ). Using Propo-

sition 3.2.1 allows to conclude that there are n/r such points in the
fiber.

8. Riemann-Hurwitz formula says that 2gC−2 = n(2gD−2)+
∑

Q eφ(P )−
1. The last sum can be group into fibers with index of ramification ri
which appears n/ri times so we get 2gC−2 = n(2gD−2)+

∑s
i=1

n
ri

(ri−
1). Dividing by n gets the result.

9. Clearly if gD ≥ 2 then the sum is greater than 2 > 1/42. If gD = 1
since the sum is strictly positive, one of the ri > 1 so at least 2 and
the sum is greater than 1/2 > 1/42. So we can assume that gD = 0
so s − 2 >

∑
1/ri and therefore s > 2. As soon as s ≥ 5 then

the sum is greater than 1/2. So let us look at the cases s = 3 and
s = 4. For s = 4, we have 2 −

∑
1/ri which we want to be as small

as possible, so this gives (by a greedy algorithm we start with ri as
small as possible and increases keeping the condition of positivity),
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2 − 1/2 − 1/2 − 1/2 − 1/3 = 1/6 > 1/42. In the case s = 3, we have
1− 1/2− 1/3− 1/7 = 1/42.

10. We have seen that in all cases in the minimum is 1/42, so 2gC − 2 ≥
n/42 hence n ≤ 84(gC − 1).

9


	Exercise Lecture 1
	Exercise
	Exercise
	Exercise
	Exercise
	Exercise

	Exercise Lecture 2
	Exercise
	Exercise
	Exercise

	Exercise Lecture 3
	Exercise
	Exercise
	Exercise


