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1 Exercise Lecture 1

1.1

Exercise

Show that V = {(x,y) € C%?s.t. y =sinx} is not an algebraic set.

1.2

Exercise

If V is a algebraic set and P ¢ V a point, show that there exists a polynomial
F such that F(z) =0 for all z € V and F(P) = 1.

1.3

1.

Exercise

Let F(z,y, z) be a homogeneous polynomial of degree d over a field k.
Show (Euler relation)

OF OF OF
—d-F
x8x+y8y+zaz d-F(x,y,z)

(hint: take partial derivative of F\(Az, \y, A\z) = AF(z,y, z) with re-
spect to A and then A\ = 1).

If d is coprime to the characteristic of k, show that the projective set
C: F =0 is singular at Py = (20 : 3o : 20) if and only if

< oF oF oF

%(Po), @(Po), aZ(Po)> = (0,0,0).

If Py is not singular, an equation of the tangent at P is

OF OF OF
%(Po):c + 8—y(Po)y + E(PO)Z =0.

. Study the singularities of C;/C : y?z = 23 over C..



1.4 Exercise

Let V be the projective variety defined by Y2Z — (X3 + Z3) = 0. Show that
themap ¢: V — P2 given by (X : Y : Z) — (X2 : XY : Z?) is a morphism.

1.5 Exercise

Show the following result:

If two projective plane curves C1, Cy of degree n intersect in exactly n?
points and that there exists a irreducible curve D of degree m < n contain-
ing mn of these points, then there exists a curve of degree at most n — m
containing the n(n — m) residual points.

To do so, let Fi, Fy, G the equations of C1,Cy and D and p=a:b: |
be a point of D which is not in C; N Cy. Show that there exists a linear
combination of F} and Fj containing p. Conclude using Bézout.

One can use this to prove the following corollary (Pascal mystical hexagon):

The opposite sides of a hexagon inside an irreducible conic meet in three
collinear points.

Figure 1: Pascal mystical hexagon

2 Exercise Lecture 2

2.1 Exercise

Let C = V(F) C P2 be a dimension 1 affine variety over k. Let P € C be a
smooth point. We are going to show that k[C]p is a discrete valuation ring



and that if L = V(aX +bY + c) is any line through P which is not tangent
to C at P, then its image in k[C]p is a uniformizer at P

1. Show that by a change of variables we can assume that P = (0,0) that
Y =0 is the tangent at P and that L = V(X).

2. Show that Mp = (X,Y)

3. Show that F' = YG — X2H where G = a + higher terms with a # 0
and H € k[X].

4. Conclude that Mp = (X).

2.2 Exercise

Let ¢ : C1 — C3 be a non-constant morphism of curves and f € k(Cs)*, P €
C4. Prove that

ordp(¢*f) = ey(P) ordypy(f)-

2.3 Exercise

We give a proof of residue theorem in the case of C = P! over an alge-
braically closed field k.

1. Consider a rational fraction P(X)/Q(X). Show that one can write
P/Q as a sum of terms of the form ¢(X — a)™ with ¢ € k*,a € k and
n € Z. By linearity, one can restrict to one of these cases.

2. Show for each cases that the formula holds.

3 Exercise Lecture 3

3.1 Exercise

Prove that a curve C' has genus 0 iff there exists two distinct points P, Q) € C
such that (P) ~ (Q).

3.2 Exercise

Let ¢ : C1 — Cs a non-constant morphism between curves.
1. Show that g, > gc,-

2. Prove that if there is equality then g = 0 or (g = 1 and ¢ is unramified)
or (g > 2 and ¢ is an isomorphism).



3.3 Exercise

Let k£ be an algebraically closed field. Let C be a curve of genus go > 1
and G be the group of automorphisms of C'. It is known that this is always
a finite group. In the first part of this exercise, we are going to prove this
result when C' is hyperelliptic and the characteristic of k is different from 2.
We write C' : Y2 = f(X) where f is of degree 2gc + 2 (a singular model
for C'). Recall that isomorphisms of hyperelliptic curves are of the form

aX +b eY
(XY
g ( ) )'_> <CX+d’(CX+d)g+1>

with M = [‘CL Z

phism of P! given by (X : Z) = (aX +bZ : cX +dZ) and we therefore have
a surjective morphism from G to G = {g, g € G}.

] € GLg(k) and e € k*. We denote g the induces automor-

1. Show that the kernel of this morphism is generated by the hyperelliptic
involution .

Hence in order to prove that G is finite, it is enough to prove that G is. Let
geaq.
2. Show that the 2¢g + 2 points (z;,0) € C where z; are the roots of f are
the fixed points of &.

3. Show that g permutes the points Q; = (z; : 1).

4. Show that an automorphism of P! which fixes 3 distinct points is the
identity.

5. Conclude that there exists an injective morphism from G into Symgg o
and that #G < 2(2g + 2)!.

6. Describe briefly how to compute the elements of G given a factorization
of f.

We now come back to the case where C' is not necessarily hyperelliptic
and we assume that G is finite. We assume also that the characteristic of k
does not divide #G = n.

We know that there exists a curve D/k and a morphism ¢ : C — D
separable of degree n such that for all Q € D, ¢~4(Q) = {g(P), g € G},
where P € C'is any point such that ¢(P) = @ (the curve D is the “quotient”
of C' by G and in particular ¢ o g = ¢ for all g € G). Let P € C be a point
with ramification index e4(P) = r.

7. Show that ¢~ (¢(P)) consists of exactly n/r points, each of ramifica-
tion index 7.



Let Py, ..., Ps be a maximal set of ramification points of C' lying over distinct
points of D and let ey(P;) = 7.

8. Show that Riemann-Hurwitz formula implies
29c — 2 > 1
O —agp -2+ 1

n ry
i=1 v

9. As go > 2, then the left side is > 0. Show that if gp > 0,5 >0,7; >0
are integers such that

S
1
2g9p — 2 1—-—
gp — 2+ Z >0
i=1
then the minimal value of this expression is 1/42.

10. Conclude that n < 84(gc — 1).
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