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1 Exercise Lecture 1

1.1 Exercise

Show that V = {(x, y) ∈ C2 s.t. y = sinx} is not an algebraic set.

1.2 Exercise

If V is a algebraic set and P /∈ V a point, show that there exists a polynomial
F such that F (x) = 0 for all x ∈ V and F (P ) = 1.

1.3 Exercise

1. Let F (x, y, z) be a homogeneous polynomial of degree d over a field k.
Show (Euler relation)

x
∂F

∂x
+ y

∂F

∂y
+ z

∂F

∂z
= d · F (x, y, z)

(hint: take partial derivative of F (λx, λy, λz) = λdF (x, y, z) with re-
spect to λ and then λ = 1).

2. If d is coprime to the characteristic of k, show that the projective set
C : F = 0 is singular at P0 = (x0 : y0 : z0) if and only if(

∂F

∂x
(P0),

∂F

∂y
(P0),

∂F

∂z
(P0)

)
= (0, 0, 0).

3. If P0 is not singular, an equation of the tangent at P is

∂F

∂x
(P0)x+

∂F

∂y
(P0)y +

∂F

∂z
(P0)z = 0.

4. Study the singularities of C1/C : y2z = x3 over C..
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1.4 Exercise

Let V be the projective variety defined by Y 2Z− (X3 +Z3) = 0. Show that
the map φ : V → P 2 given by (X : Y : Z) 7→ (X2 : XY : Z2) is a morphism.

1.5 Exercise

Show the following result:

If two projective plane curves C1, C2 of degree n intersect in exactly n2

points and that there exists a irreducible curve D of degree m < n contain-
ing mn of these points, then there exists a curve of degree at most n −m
containing the n(n−m) residual points.

To do so, let F1, F2, G the equations of C1, C2 and D and p = [a : b : c]
be a point of D which is not in C1 ∩ C2. Show that there exists a linear
combination of F1 and F2 containing p. Conclude using Bézout.

One can use this to prove the following corollary (Pascal mystical hexagon):
The opposite sides of a hexagon inside an irreducible conic meet in three
collinear points.

Figure 1: Pascal mystical hexagon

2 Exercise Lecture 2

2.1 Exercise

Let C = V (F ) ⊂ P 2 be a dimension 1 affine variety over k. Let P ∈ C be a
smooth point. We are going to show that k[C]P is a discrete valuation ring
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and that if L = V (aX + bY + c) is any line through P which is not tangent
to C at P , then its image in k[C]P is a uniformizer at P

1. Show that by a change of variables we can assume that P = (0, 0) that
Y = 0 is the tangent at P and that L = V (X).

2. Show that MP = (X,Y )

3. Show that F = Y G − X2H where G = a + higher terms with a 6= 0
and H ∈ k[X].

4. Conclude that MP = (X).

2.2 Exercise

Let φ : C1 → C2 be a non-constant morphism of curves and f ∈ k(C2)
∗, P ∈

C1. Prove that

ordP (φ∗f) = eφ(P ) ordφ(P )(f).

2.3 Exercise

We give a proof of residue theorem in the case of C = P 1 over an alge-
braically closed field k.

1. Consider a rational fraction P (X)/Q(X). Show that one can write
P/Q as a sum of terms of the form c(X − a)n with c ∈ k∗, a ∈ k and
n ∈ Z. By linearity, one can restrict to one of these cases.

2. Show for each cases that the formula holds.

3 Exercise Lecture 3

3.1 Exercise

Prove that a curve C has genus 0 iff there exists two distinct points P,Q ∈ C
such that (P ) ∼ (Q).

3.2 Exercise

Let φ : C1 → C2 a non-constant morphism between curves.

1. Show that gC1 ≥ gC2 .

2. Prove that if there is equality then g = 0 or (g = 1 and φ is unramified)
or (g ≥ 2 and φ is an isomorphism).
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3.3 Exercise

Let k be an algebraically closed field. Let C be a curve of genus gC > 1
and G be the group of automorphisms of C. It is known that this is always
a finite group. In the first part of this exercise, we are going to prove this
result when C is hyperelliptic and the characteristic of k is different from 2.

We write C : Y 2 = f(X) where f is of degree 2gC + 2 (a singular model
for C). Recall that isomorphisms of hyperelliptic curves are of the form

g : (X,Y ) 7→
(
aX + b

cX + d
,

eY

(cX + d)g+1

)

with M =

[
a b
c d

]
∈ GL2(k) and e ∈ k∗. We denote g̃ the induces automor-

phism of P 1 given by (X : Z) 7→ (aX+ bZ : cX+dZ) and we therefore have
a surjective morphism from G to G̃ = {g̃, g ∈ G}.

1. Show that the kernel of this morphism is generated by the hyperelliptic
involution ι.

Hence in order to prove that G is finite, it is enough to prove that G̃ is. Let
g̃ ∈ G̃.

2. Show that the 2g+ 2 points (xi, 0) ∈ C where xi are the roots of f are
the fixed points of ι.

3. Show that g̃ permutes the points Qi = (xi : 1).

4. Show that an automorphism of P 1 which fixes 3 distinct points is the
identity.

5. Conclude that there exists an injective morphism from G̃ into Sym2g+2

and that #G ≤ 2(2g + 2)!.

6. Describe briefly how to compute the elements ofG given a factorization
of f .

We now come back to the case where C is not necessarily hyperelliptic
and we assume that G is finite. We assume also that the characteristic of k
does not divide #G = n.

We know that there exists a curve D/k and a morphism φ : C → D
separable of degree n such that for all Q ∈ D, φ−1(Q) = {g(P ), g ∈ G},
where P ∈ C is any point such that φ(P ) = Q (the curve D is the “quotient”
of C by G and in particular φ ◦ g = φ for all g ∈ G). Let P ∈ C be a point
with ramification index eφ(P ) = r.

7. Show that φ−1(φ(P )) consists of exactly n/r points, each of ramifica-
tion index r.
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Let P1, . . . , Ps be a maximal set of ramification points of C lying over distinct
points of D and let eφ(Pi) = ri.

8. Show that Riemann-Hurwitz formula implies

2gC − 2

n
= 2gD − 2 +

s∑
i=1

1− 1

ri
.

9. As gC ≥ 2, then the left side is > 0. Show that if gD ≥ 0, s ≥ 0, ri ≥ 0
are integers such that

2gD − 2 +
s∑
i=1

1− 1

ri
> 0

then the minimal value of this expression is 1/42.

10. Conclude that n ≤ 84(gC − 1).
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