Elliptic Curves. Exercises

Elisa Lorenzo García

Exercise 0.1. Compute the discriminant of the curve $y^2 + 2xy + 2y = x^3 + 3x^3 + 2x + 1$. Is is an elliptic curve over \mathbb{Q} ? and over \mathbb{F}_7 ?

Exercise 0.2. Compute a Legendre model for the elliptic curve $E: y^2 + 2xy + 2y = x^3 + 3x^3 + 2x + 1/\mathbb{Q}$.

Exercise 0.3. Show that 3 points on an elliptic curve add to ∞ if and only if they are collinear.

Exercise 0.4. Determine the doubling and addition formulas for an elliptic curve in characteric 2 and 3.

Exercise 0.5. Let E be given by $y^2 = x^3 + Ax + B$ over a field K and let $d \in K^*$. The twist of E by d is the elliptic curve $E^{(d)}$ given by $y^2 = x^3 + Ad^2x + Bd^3$.

- (a) Show that $j(E^{(d)}) = j(E)$.
- (b) Show that $E^{(d)}$ can be transformed into E over $K(\sqrt{d})$.
- (c) Show that $E^{(d)}$ can be transformed over K to the form $dy^2 = x^3 + Ax + B$.

Exercise 0.6. Let k be a field of characteristic different from 2 or 3. Let us consider an elliptic curve $E : y^2 = x^3 + ax + b$ given by a simplified Weierstrass model. Prove that the automorphism group Aut(E) has only 2 elements if $j \neq 0,1728, 4$ elements if j = 1728 and 6 elements if j = 0 (if the characteristic is 2 or 3 the automorphism group may be larger).

Exercise 0.7. Let k be a field of characteristic different from 2 or 3. Let us consider an elliptic curve $E: y^2 = x^3 + ax + b$ given by a simplified Weierstrass model. Find a Legendre model $y^2 = x(x-1)(x-\lambda)$.

Starting now with a Legendre model $y^2 = x(x-1)(x-\lambda)$, find a Weierstrass model. Check that the *j*-invariant is given by

$$j = 2^8 \frac{(\lambda^2 - \lambda + 1)^3}{\lambda^2 (\lambda - 1)^2}$$

and that the values $\frac{1}{\lambda}$, $1 - \lambda$, $\frac{1}{1-\lambda}$, $\frac{\lambda}{\lambda-1}$, $\frac{\lambda-1}{\lambda}$ produce the same *j*-invariant. Can you find a reason for that?

Exercise 0.8. (2-torsion) Let E/k be an elliptic curve given by a simplified Weierstrass model $E: y^2 = x^3 + ax + b$. Find E[2].

(3-torsion) Let E/k be an elliptic curve given by a simplified Weierstrass model $E: y^2 = x^3 + ax + b$. Find E[3].

Exercise 0.9. Let E be the elliptic curve $y^2 = x^3 + 1 \mod 5$.

- (a) Compute the division polynomial $\psi_3(x)$.
- (b) Compute $gcd(x^5 x, \psi_3(x))$.
- (c) Use the result of part (b) to show that the 3-torsion points in $E(\mathbb{F}_5)$ are $\{\infty, (0,1), (0,-1)\}$.

Exercise 0.10. Let E be an elliptic curve in characteristic 2. Show that the $E[3] \simeq C_3 \oplus C_3$.

Exercise 0.11. Let E be an elliptic curve over a field K and let $P \neq \infty$ be a point of exact order n (where n is not divisible by the characteristic of K). Let $Q \in E[n]$. Show that there exists an integer k such that Q = kP if and only if $e_n(P,Q) = 1$.

Exercise 0.12. Show that each of the following elliptic curves defined over \mathbb{Q} has the stated torsion group:

- $y^2 = x^3 2; \{O\}.$
- $y^2 = x^3 + 8; \mathbb{Z}/2\mathbb{Z};$
- $y^2 = x^3 + 4; \mathbb{Z}/3\mathbb{Z};$
- $y^2 = x^3 + 4x; \mathbb{Z}/4\mathbb{Z};$
- $y^2 = x^3 432x + 8208; \mathbb{Z}/5\mathbb{Z};$
- $y^2 = x^3 + 1; \mathbb{Z}/6\mathbb{Z};$

Exercise 0.13. Let E/\mathbb{Q} : $y^2 = x^3 + 2x - 2$. Prove that E is an elliptic curve. Let $P = (1,1) \in E(\mathbb{Q})$. Compute 2P. Prove that E has infinetely many rational points.