The modular group

Valerio Talamanca (Università Roma Tre \& RNTA)

CIMPA research school
Group Actions in Arithmetic and Geometry Gadjah Mada University, Yogyakarta, Indonesia

February 17th-28th 2020

Isomorphism classes of complex tori

We have seen in the first lecture that to any lattice $\Lambda \subset \mathbb{C}$ we can associate a complex tori defined as \mathbb{C} / Λ.

Question

When two distinct lattice Λ_{1} and Λ_{2} give rise to isomorphic complex tori $\mathbb{C} / \Lambda_{1} \cong \mathbb{C} / \Lambda_{2}$?

Definition

Two lattice Λ_{1} and Λ_{2} are said to be homothetic if there exists $\alpha \in \mathbb{C}$ such that $\alpha \Lambda_{1}=\Lambda_{2}$

If α is such that $\alpha \Lambda_{1} \subseteq \Lambda_{2}$, then we can define a surjective map $\phi_{\alpha}: \mathbb{C} / \Lambda_{1} \rightarrow \mathbb{C} / \Lambda_{2}$, by setting

$$
\phi_{\alpha}\left([z]_{\Lambda_{1}}\right)=[\alpha z]_{\Lambda_{2}} .
$$

It can be shown that this is a holomorphic map. Moreover if $\alpha \Lambda_{1}=\Lambda_{2}$ then ϕ_{α} is an isomorphism.

Isomorphism classes of complex tori

Consider the association

$$
\begin{aligned}
\left\{\alpha \in \mathbb{C}: \alpha \Lambda_{1} \subseteq \Lambda_{2}\right\} & \rightarrow\left\{\frac{\mathbb{C}}{\Lambda_{1}} \xrightarrow{\phi} \frac{\mathbb{C}}{\Lambda_{2}}: \phi(0)=0 \text { and } \phi \text { holomorphic }\right\} \\
\alpha & \mapsto \phi_{\alpha}
\end{aligned}
$$

Theorem
Let Λ_{1} and Λ_{2} be two lattices. Then the above association is a bijection. Moreover \mathbb{C} / Λ_{1} and \mathbb{C} / Λ_{2} are isomorphic if and only if Λ_{1} and Λ_{2} are homothetic.

Let

$$
\mathcal{L}=\{\Lambda \subset \mathbb{C}: \Lambda \text { is a lattice }\}
$$

We have an action of \mathbb{C}^{*} on \mathcal{L}

$$
\begin{aligned}
\mathbb{C}^{*} \times \mathcal{L} & \longrightarrow \mathcal{L} \\
(\alpha, \Lambda) & \longmapsto \alpha \Lambda
\end{aligned}
$$

Let $\Lambda_{0} \in \mathcal{L}$ the orbit of Λ_{0} under \mathbb{C}^{*} is the set

$$
\operatorname{Orb}_{\mathbb{C}^{*}}\left(\Lambda_{0}\right)=\left\{\Lambda \in \mathcal{L}: \Lambda=\alpha \Lambda_{0}\right\}
$$

The set of orbits is usually denoted by $\mathcal{L} / \mathbb{C}^{*}$. Since two complex tori are isomorphic if and only if the associates lattices are homothetic we have that there exists a bijection
$\mathcal{L} / \mathbb{C}^{*} \longrightarrow\{$ isomorphisms classes of complex tori $\}$
So we want to understand better what $\mathcal{L} / \mathbb{C}^{*}$ looks like.

Lemma

Every lattice is homothetic to a lattice of the form $\mathbb{Z}+\tau \mathbb{Z}$ with $\operatorname{Im}(\tau)>0$.
Let

$$
\mathfrak{h}=\{z \in \mathbb{C}: \operatorname{Im}(z)>0\}
$$

denote the upper half plane. Then, as consequence of the previous lemma, we have that the map

$$
\begin{aligned}
& \mathfrak{h} \longrightarrow \mathcal{L} / \mathbb{C}^{*} \\
& \tau \longmapsto\left[\Lambda_{\tau}\right]
\end{aligned}
$$

is surjective. Unfortunately is not injective.

We have to consider another action to actually get a set of representative for the set of orbits. First of all recall that $\operatorname{Mat}_{2 \times 2}(\mathbb{R})$ acts on \mathfrak{h} by
fractional linear transformation, which means that given $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ we let

$$
\gamma \cdot z=\frac{a z+b}{c z+d}
$$

Lemma

If $\operatorname{Im}(\tau) \neq 0$, then

$$
\operatorname{Im}\left(\frac{a z+b}{c z+d}\right)=\frac{(a d-b c)}{|c z+d|^{2}} \operatorname{Im}(z)
$$

Let

$$
\mathrm{SL}_{2}(\mathbb{Z})=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \operatorname{Mat}_{2 \times 2}(\mathbb{Z}): a d-b c=1\right\} .
$$

$\mathrm{SL}_{2}(\mathbb{Z})$ is called the modular group and often denote by $\Gamma(1)$. By the above lemma $\mathrm{SL}_{2}(\mathbb{Z})$ act on \mathbb{C} by fractional linear transformation:

$$
\begin{gathered}
\mathrm{SL}_{2}(\mathbb{Z}) \times \mathfrak{h} \longrightarrow \mathfrak{h} \\
\left(\gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), \tau\right) \longmapsto \gamma(\tau)=\frac{a \tau+b}{c \tau+d}
\end{gathered}
$$

Clearly $-I=\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$ acts like the identity. Thus we get an action of the quotient group $\overline{\Gamma(1)}$ on \mathfrak{h}

Lemma

The lattices $\Lambda_{\tau_{1}}$ and $\Lambda_{\tau_{2}},\left(\tau_{1}, \tau_{2} \in \mathfrak{h}\right)$, are homothetic if and only if there exist $\gamma \in \Gamma(1)$ such that $\gamma\left(\tau_{1}\right)=\tau_{2}$.

Thus to understand $\mathcal{L} / \mathbb{C}^{*}$ we only need to compute a fundamental domain for the action of $\Gamma(1)$ on \mathfrak{h}

Recall that \mathcal{F} is a fundamental domain for the action of the modular group $\Gamma(1)$ if the following condition holds: each orbit intersect \mathcal{F} in exactly one point.

A fundamental domain

Let

$$
\tilde{\mathcal{F}}=\left\{\tau \in \mathfrak{h}:|\tau| \geq 1 \text { and }-\frac{1}{2} \leq \operatorname{Re}(\tau) \leq \frac{1}{2}\right\}
$$

where $\rho=\exp \left(\frac{2 \pi i}{3}\right)$

Matrices in $\Gamma(1)$

$$
T=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \quad S=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

and their action is given by

$$
T(\tau)=\tau+1 \quad S(\tau)=-\frac{1}{\tau}
$$

Note that $S^{2}=I$. Moreover

$$
(S T)^{3}=\left(\begin{array}{cc}
0 & -1 \\
1 & 1
\end{array}\right)^{3}=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)=-l
$$

and

$$
(T S)^{3}=\left(\begin{array}{cc}
0 & -1 \\
1 & 1
\end{array}\right)^{3}=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)=-1
$$

So $(T S)^{3}=I$ and $(S T)^{3}=I$ in $\overline{\Gamma(1)}$.

Theorem

(1) Given $\tau \in \mathfrak{h}$ then there exists $\gamma \in \Gamma(1)$ such that $\gamma(\tau) \in \tilde{\mathcal{F}}$
(2) Given $\tau \in \tilde{\mathcal{F}}$ and $\gamma \in \Gamma(1)$, then $\gamma(\tau) \in \tilde{\mathcal{F}}$ if and only if one of the following situations occur:
(a) $\operatorname{Re}(\tau)=\frac{1}{2}$ and $\gamma(\tau)=\tau-1$
(b) $\operatorname{Re}(\tau)=-\frac{1}{2}$ and $\gamma(\tau)=\tau+1$
(c) $|\tau|=1$ and $\gamma(\tau)=-\frac{1}{\tau}$
(3) Given $\tau \in \mathfrak{h}$ let

$$
\operatorname{Stab}_{\tau}=\{\gamma \in \overline{\Gamma(1)}: \gamma(\tau)=\tau\}
$$

Then for $\tau \in \tilde{\mathcal{F}}$ we have

$$
\mathrm{Stab}_{\tau}= \begin{cases}<S> & \text { if } \tau=i \\ <S T> & \text { if } \tau=\rho=\exp \left(\frac{2 \pi i}{3}\right) \\ <T S> & \text { if } \tau=-\bar{\rho}=\exp \left(\frac{\pi i}{3}\right) \\ I & \text { otherwise }\end{cases}
$$

Theorem
The group $\overline{\Gamma(1)}$ is generated by T and S.

The fondamental domain for the action of $\overline{\Gamma(1)}$ on \mathfrak{h}.

