PROBLEMS MODULAR FORMS CIMPA 2023

MAR CURCÓ IRANZO, LAURA GEATTI, VALENTIJN KAREMAKER

1. LIST 1

Problem 1. Let $\mathcal{D} := \{z \in H : |z| \ge 1 \text{ and } |Re(z)| \le 1/2\}$ be the fundamental domain of $SL_2(\mathbb{Z})$ described in the lectures. Prove the following statements.

- (a) If $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$ is such that $\gamma(\tau_1) = \tau_2$ for some $\tau_1, \tau_2 \in \mathcal{D}$, then $c \in \{-1, 0, 1\}$. (b) If $\gamma = \begin{pmatrix} a & b \\ 1 & d \end{pmatrix} \in SL_2(\mathbb{Z})$ is such that $\gamma(\tau_1) = \tau_2$ for some $\tau_1, \tau_2 \in \mathcal{D}$, then $d \in \{-1, 0, 1\}$
- (c) If $\gamma = \begin{pmatrix} a & b \\ 1 & 0 \end{pmatrix} \in SL_2(\mathbb{Z})$ then b = -1. Moreover, if γ is such that $\gamma(\tau_1) = \tau_2$ for some $\tau_1, \tau_2 \in \mathcal{D}$, then $a \in \{-1, 0, 1\}$. Moreover, for each $a \in \{-1, 0, 1\}$, describe which are the possible τ_1 and τ_2 (note that $\tau_1 = \tau_2$ is admissible).

Problem 2. In this exercise you will prove that the matrices $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ generate the group $SL_2(\mathbb{Z})$.

- (a) Consider $\Gamma' := \langle T, S \rangle \subseteq SL_2(\mathbb{Z})$. Given any $z \in H$, show that there is a matrix $\gamma \in \Gamma'$ such that $Im(\gamma z)$ is maximal in the orbit of z under the group Γ' . (Hint: use the formula $Im(\gamma z) = \frac{Im(z)}{|cz+d|^2}$ for $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and mimic the arguments given in the lectures.)
- (b) Prove the classification of the stabilizers given in the lectures. That is, if I(z) is the stabilizer of $z \in \mathcal{D}$ under $\Gamma = SL_2(\mathbb{Z}) \setminus \{\pm Id\}$, show that
 - (1) if $z \in int(\mathcal{D})$, then $I(z) = \{Id\}$.
 - (2) if z = i, then $I(z) = \{Id, S\}$.
 - (3) if $z = \rho = e^{2\pi i/3}$, then $I(z) = \{Id, ST, (ST)^2\}$.
 - (4) if $z = -\overline{\rho} = e^{\pi i/3}$, then $I(z) = \{Id, TS, (TS)^2\}$.
- (c) Use part (a) and (b) to show that $\Gamma' = SL_2(\mathbb{Z})$. (Hint: consider z a point in the interior of the fundamental domain of $SL_2(\mathbb{Z})$.)

Problem 3. For k > 2 an integer, we defined the function $G_k(\Lambda)$ on lattices of \mathbb{C} and we considered $G_k(z)$ the expression of $G_k(\Lambda)$ as a function defined on H. On the other hand we also defined the function $E_k(z)$ on the complex upper-half plane H.

- (a) Show that $G_k(z) = 2\zeta(k) \cdot E_k(z)$, where $\zeta(k)$ is Riemann's Zeta function $\zeta(k) = \sum_{r>1} \frac{1}{r^k}$. (Hint: given $(m,n) \neq (0,0)$ in \mathbb{Z}^2 , consider $r = \gcd(m,n)$.
- (b) Use Problem 2 to show that $E_k(z)$ transforms as a modular form of weight k; that is,

 $E_k(\gamma z) = (cz+d)^k E_k(z)$

for any $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$ by checking it for S and T.

Date: January 13, 2023.

Problem 4. Zeroes of modular forms.

- (a) Let $\rho = \exp(2\pi i/3)$. Show that $E_4(\rho) = 0$. (Hint: $E_4(-1/z) = z^4 E_4(z)$.)
- (b) Show that $E_6(i) = 0$.
- (c) Use the Valence formula to show that E_4 has a simple zero at ρ and no other zero in H and E_6 has a simple zero at i and no other zero in H.

Problem 5. In this exercise you will show that the only modular forms of weight zero are constant functions.

- (a) Show that there exists $C \in \mathbb{R}_{>0}$ such that any element in H is $SL_2(\mathbb{Z})$ -equivalent to some $z \in H$ with $Im(z) \geq C$. (You can take e.g. $C = \sqrt{3}/2$.)
- (b) Deduce that if $f : H \to \mathbb{C}$ is a cusp form of weight 0, then |f| attains a maximum on H.
- (c) Conclude that the space of modular forms of weight zero consists exactly of the constant functions $H \rightarrow \mathbb{C}$. (Hint: use the maximum modulus principle.)

Problem 6 (Bonus). For k = 2, we have seen that the Eisenttein series $E_2(z)$ is not a modular function. However, this series also satisfies some transformation properties w.r.t. the action of $SL_2(\mathbb{Z})$. By convention we take

$$G_2(z) = \sum_{n \neq 0} \frac{1}{z^2} + \sum_{m \neq 0} \sum_{n \in \mathbb{Z}} \frac{1}{(mz+n)^2}.$$

(a) Show that E_2 satisfies

$$E_{2}(z+1) = E_{2}(z),$$

$$z^{-2}E_{2}\left(-\frac{1}{z}\right) = E_{2}(z) + \frac{12}{2\pi i z},$$

$$(cz+d)^{-2}E_{2}\left(\frac{az+b}{cz+d}\right) = E_{2}(z) + \frac{12c}{2\pi i (cz+d)}$$

You can use without proof the two following identities:

$$\sum_{m \neq 0} \sum_{n \in \mathbb{Z}} \left(\frac{1}{mz+n} - \frac{1}{mz+n+1} \right) = 0,$$
$$\sum_{n \in \mathbb{Z}} \sum_{m \neq 0} \left(\frac{1}{mz+n} - \frac{1}{mz+n+1} \right) = -\frac{2\pi i}{z}$$

We define Dedekind's eta function as $\eta(q) = q^{1/24} \prod_{n=1}^{\infty} (1-q^n)$, where $q = \exp^{2\pi i z}$.

- (b) Show that $\frac{1}{2\pi i} \frac{d}{dz} log(\eta(z)) = \frac{1}{24} E_2(z)$.
- (c) Show that the function $\eta(z)$ satisfies

$$\eta(z+1) = \exp\left(\frac{1}{24}\right)\eta(z),$$
$$\eta\left(\frac{-1}{z}\right) = \sqrt{-iz}\eta(z),$$
$$\eta\left(\frac{az+b}{cz+d}\right) = \epsilon_{\eta}(a,b,c,d)\sqrt{-i(cz+d)}\eta(z),$$

where $\epsilon_n(a, b, c, d)$ is some 24th root of unity.

(d) Conclude that $\eta(z)^{24}$ is a modular form of weight 12.