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What is algebraic geometry?

Algebraic geometry is the study of geometric structures defined by
polynomials.
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What is algebraic geometry?

Algebraic geometry is the study of geometric structures defined by
polynomials.

(a) Descartes 1596-1650 (b) Fermat 1607-1665
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Affine space and algebraic sets

Definition

Let k be a field. The n-dimensional affine space An(k) or simply An, is

An(k) = {(a1, . . . an) | ai∈k i = 1, . . . , n}
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Affine space and algebraic sets

Algebraic geometry is the study of geometric structures defined by
polynomials.
To link polynomials with set we need the following:

Definition

Let F∈k[x1, . . . xn] then the zero locus of F is

Z (F ) = {P = (a1, . . . an)∈An | F (P) = f (a1, . . . an) = 0}
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Affine space and algebraic sets

Algebraic geometry is the study of geometric structures defined by
polynomials.
To link polynomials with set we need the following:

Definition

Let f ∈k[x1, . . . xn] then the zero locus of f is

Z (F ) = {P = (a1, . . . an)∈An | F (P) = f (a1, . . . an) = 0}

If T ⊂ k[x1, . . . xn] is a subset, the zero locus of T is

Z (T ) = {P∈An | F (P) = 0 ∀F∈T}
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Curves in the real plane

(a) Z (3x + 4y + 2) (b) Z (x2 + y2 − 4)
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Curves in the real plane

(a) Z (y2 − x3 + x) ⊂ A2(R) (b) Z (y2 − x4) ⊂ A2(R)
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Curves in the real plane

Figure: Z (F ) ⊂ A2(R)

where F (x , y) = ((y + x)2 + 6(x − y)3 − 3)(6(x + y2 + (x − y)2)) + 1
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Surfaces in A3(R): Clebesch’s cubic

Figure: Z (F ) ⊂ A2(R)

where F (x , y , z) = 81(x3 + y3 + z3)− 9(x2 + y2 + z2)− 189(x2y + x2z +
xy2 + xz2 + y2z + yz2) + 54xyz − 9(x + y + z) + 126(xy + xz + yz)− 1
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Surfaces in A3(R): Barth’s sestic

Figure: Z (F ) ⊂ A2(R)

F (x , y , z)=4(φ2x2−y2)(φ2y2−z2)(φ2z2−x2)−(1+2φ)(x2+y2+z2−1)2

where φ is the golden ratio.
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Affine space and algebraic sets

We define the building blocks of our geometry as follows:

Definition

A subset Y of An is called an (affine) algebraic set if there exists a subset
T of k[x1, . . . xn] such that Y is zero locus of T , i.e. Y = Z (T ).
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A simple example: degree one polynomials

Suppose T consists of a finite number of linear polynomial, say
T = {F1, . . . , Fk}, and suppose

Fi (x1, . . . , xn) = ai1x1 + · · ·+ aknxn + bk

Then the algebraic set Y = Z (T ) is nothing else than the set of solutions
of the system of linear equations:

a11x1 + . . . +a1nxn = b1
...

...
ak1x1 + . . . +aknxn = bk
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A simple example: degree one polynomials

The theorem of Rouché - Capelli, gives us the complete answer: let A be
the matrix of the coefficient of the system and Ã the complete matrix of
the sistem. Then the system defines an non empty algebraic set X of An if
and only if rank(A) = rank(Ã). Furthermore the dimension of X equals
n − rank(A).
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A simple example: degree one polynomials
The theorem of Rouché - Capelli, gives us the complete answer: let A be
the matrix of the coefficient of the system and Ã the complete matrix of
the sistem. Then the system defines an affine subspace X of An if and
only if rank(A) = rank(Ã). Furthermore the dimension of X equals
n− rank(A). It also follows that there exists a bijection between X and Ad

where d = n − rank(A).

The plane x − 3y + z − 2 = 0 in A3(R)
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Conics in the affine plane

A conic C = Z (F ) ⊂ A2 is the zero locus of a quadratic polynomial in
k[x , y ]:

F (x , y) = a0 + a1x + a2y + a3x
2 + a4y

2 + a5xy
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Conics in the affine plane

A conic C = Z (F ) is the zero locus of a quadratic polynomial in k[x , y ]:

F (x , y) = a0 + a1x + a2y + a3x
2 + a4y

2 + a5xy

(a) Z(3x2+y2+2xy + 3x + y − 6) (b) Z(9x2+4y2+12xy+3x+4y−5) (c) Z(3x2+4y2+12xy+3x+4y−5)

Figure: Irreducible conics in the real plane
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Conics in the affine plane

But we also have the so-called degenerate conics

(a) Z(3x2+y2+7xy + 5x + 6y + 2) (b) Z(x2+y2+2xy−4x−4y+4)

Figure: Degenerate conics in the real plane
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Classification of conics in the affine plane

How to distinguish non-degenerate conics from degenerate ones?

Valerio Talamanca (Roma Tre) Basic notions in algebraic geometry October 15th, 2021 20 / 119



Degenerate vs non degenerate conics

How to distinguish non-degenerate conics from degenerate ones? Given
C = Z (F ) where F (x , y) = a0 + a1x + a2y + a3x

2 + a4y
2 + a5xy set

AF =


a0

1
2a1

1
2a2

1
2a1 a3

1
2a5

1
2a2

1
2a5 a4

 BF =

 a3
1
2a5

1
2a5 a4



C is degenerate if and only rank(AF ) < 3.

C is simply degenerate if rank(AF ) = 2.

C isdoubly degenerate if rank(AF ) = 1.

If det(BF ) 6= 0, then C is called a central conic

If det(BF ) = 0, then C is called a parabola
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Classification of conics over an algebraically closed field

First of all we need maps!
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Classification of conics over an algebraically closed field

First of all we need maps!

Definition

An affine equivalence T : A2 → A2 is the composition of an invertible
linear transformation and a translation, so if P = (x , y) and
T (P) = (x ′, y ′), we have

x ′ = a11x + a12y + b0

y ′ = a21x + a22y + b1

where ( a11 a12
a21 a22 ) is an invertible matrix, and b0, b1∈k .
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Classification of conics over an algebraically closed field

First of all we need maps!

Definition

An affine equivalence T : A2 → A2 is the composition of an invertible
linear transformation and a translation, so if P = (x , y) and
T (P) = (x ′, y ′), we have

x ′ = a11x + a12y + b0

y ′ = a21x + a22y + b1

where ( a11 a12
a21 a22 ) is an invertible matrix, and b0, b1∈k .

Definition

Two conics C and D are affinely equivalent if there exists an affine
transformation T : A2 → A2 such that T (C) = D).

Valerio Talamanca (Roma Tre) Basic notions in algebraic geometry October 15th, 2021 24 / 119



Classification of conics over an algebraically closed field

It can be shown that the properties of being non degenerate, simply
degenerate and doubly degenerate are preserved under affine
transformations (as it should be), as well as the property to be central.

Theorem

Let k be an algebraically closed field. Any affine conic in A2(k) is affinely
equivalent to one (and only one) of the following:

x2 + y2 − 1 = 0 center conic

y2 − x = 0 parabola

x2 + y2 = 0 degenerate center conic

y2 − 1 = 0 degenerate parabola

y2 = 0 doubly degenerate conic
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Classification of conics over R

Theorem

Any affine conic in A2(R) is affinely equivalent to one (and only one) of
the following:

x2 + y2 − 1 = 0 ellipse

x2 + y2 + 1 = 0 ellipse with no real points

y2 − x = 0 parabola

x2 − y2 − 1 = 0 iperbole

x2 − y2 = 0 degenerate iperbole

y2 − 1 = 0 degenerate parabola

y2 + 1 = 0 degenerate parabola with no real points

y2 = 0 doubly degenerate conic
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The algebraic key fact behind the classification result

Theorem

a) Let A be a n × n symmetric matrix with complex coefficients of rank
r , then A is congruent to a matrix of the form(

Ir 0
0 0

)
b) Let A be a n × n symmetric matrix with real coefficients of rank r ,

then A is congruent to a matrix of the formIp 0 0
0 −Ir−p 0
0 0 0


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Properties of affine algebraic sets

Recall that the zero locus of T ⊂ k[x1, . . . xn] is a subset, the zero locus of
T is

Z (F ) = {P∈An | F (P) = 0 ∀F∈T}

and that a subset Y of An is called an (affine) algebraic set if there exists
a subset T of k[x1, . . . xn] such that Y is zero locus of T , i.e. Y = Z (T ).
If T = {F} the ideal generated by f is denoted by (F ) and the relative
zero locus by Z (F ).
Immediate properties

Z (0) = An(k)

Z (1) = ∅
If T ⊆ S the Z (S) ⊆ Z (T )
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Properties of algebraic sets

Z1) If a is the ideal generated by T ⊂ k[x1, . . . , xn] then Z (T ) = Z (a).

Proof Since T ⊆ a one has Z (a) ⊆ Z (T ). Suppose P ∈ Z (T ), then
H(P) = 0 for all H ∈ T . Let G be an element of a then G is of the form
G = F1H1 + . . .FnHn with Hi ∈ T . Then

G (P) = (F1H1 + . . .FnHn)(P) = F1(P)H1(P) + . . .Fn(P)Hn(P) = 0

and so P∈Z (a) so Z (T ) ⊆ Z (a).
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Properties of algebraic sets

Z2) Let {aα}α∈A be any collection of ideals. Set T =
⋃
α∈A aα. Then

Z (T ) =
⋂
α∈A Z (I ).

Proof Let P ∈ Z (T ). Given any F ∈ aα we have F (P) = 0, and so
P ∈ Z (aα), since α is arbitrary we have P ∈

⋂
α∈A Z (aα), hence we have

Z (T ) ⊆
⋂
α∈A Z (a).

Next suppose P ∈
⋂
α∈A Z (aα). Let F ∈

⋃
α∈A aα. Then F ∈ aα for some

α. Hence F (P) = 0, because P ∈
⋂
α∈A Z (aα), thus P ∈ Z (a). Hence we

have
⋂
α∈A Z (aα) ⊆ Z (T )

Thus the intersection of any family of algebraic sets is an algebraic set
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Properties of algebraic sets

Z3) Let a, b be two ideals in k[x1, . . . xn]. Then Z (a) ∪ Z (b) = Z (ab).

Proof Since ab is contained in both a and b, we have that Z (ab) contains
both Z (a) and Z (b), therefore Z (a) ∪ Z (b) ⊆ Z (ab).
To prove that Z (ab) ⊆ Z (a) ∪ Z (b) suppose P /∈ Z (a) ∪ Z (b), then P
does not belong to either Z (a) or Z (b). Thus we can find F ∈ Z (a) and
G ∈ Z (b), such that

F (P) 6= 0 6= G (P).

Hence (FG )(P) = F (P)G (P) 6= 0 and so P does not belong to Z (ab),
which yields that Z (ab) ⊆ Z (a) ∪ Z (b).
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The ideal associated to a subset of An(k)

Given X a subset of An(k) we define I(X ) the ideal associated to X by
setting

I (X ) = {F ∈ k[x1, . . . xn] | F (P) = 0 ∀P∈X}

Exercises

Verify that I(X ) is an ideal.

We have to show the following

Given F ,G ∈ I(X ), then F ± G ∈ I(X ).

Given F ∈ I(X ) and h ∈ k[x1, . . . xn] then FG ∈ I(X ).
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The ideal associated to a subset of An(k)

Given X a subset of An(k) we define I(X ) the ideal associated to X by
setting

I(X ) = {F ∈ k[x1, . . . xn] | F (P) = 0 ∀P∈X}

Let us verify that I(X ) is in effect an ideal of k[x1, . . . xn]
We have to show the following

Given F ,G ∈ I(X ), then F ± G ∈ I(X ).

Given F ∈ I(X ) and H ∈ k[x1, . . . xn] then FH ∈ I(X ).

To prove the first assertion note that by definition F (P) = G (P) = 0 for
all P ∈ X . So

(F ± G )(P) = F (P)± G (P) = 0± 0 = 0

for all P ∈ X .
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The ideal associated to a subset of An(k)
Given X a subset of An(k) we define I(X ) the ideal associated to X by
setting

I(X ) = {F ∈ k[x1, . . . xn] | F (P) = 0 ∀P∈X}

Let us verify that I(X ) is in effect an ideal of k[x1, . . . xn]
We have to show the following

Given F ,G ∈ I(X ), then F ± G ∈ I(X ).

Given F ∈ I(X ) and H ∈ k[x1, . . . xn] then FG ∈ I(X ).

To prove the first assertion note that by definition F (P) = G (P) = 0 for
all P ∈ X . So

(F ± G )(P) = F (P)± G (P) = 0± 0 = 0

for all P ∈ X . To prove the second assertion note that
(FH)(P) = F (P)H(P) so if F ∈ I(X ) and P ∈ X , we have

(FH)(P) = F (P)H(P) = 0H(P) = 0.

and so FH ∈ I(X ).
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The ideal associated to a subset of An(k)

Given X a subset of An(k) we define I(X ) the ideal associated to X by
setting

I(X ) = {F ∈ k[x1, . . . xn] | F (P) = 0 ∀P∈X}

Immediate properties

A1) I(∅) = k[x1, . . . xn]

A2) X ⊆ Y =⇒ I(Y ) ⊆ I(X )
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Further elementary properties

A3) I(Z (a)) ⊇ a for any ideal a in k[x1, . . . xn]

If F ∈ a then by definition F (P) = 0 for all P ∈ Z (a) and so F ∈ I(Z (a)).

The equality does not hold in general. For example take

a = (x2) ⊂ k[x , y ].

Then
Z (a) = {(0, y) ∈ A2(k)}.

Therefore x belongs to I(Z (a)), but x does not belong to (x2).
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Further elementary properties

A4) Z (I(X )) ⊇ X for any X ⊂ An(k).

If P ∈ X , then F (P) = 0 for all F ∈ I (X ) and hence P ∈ Z (I (X ))

Also in this case the equality does not hold in general. For example take

X = {(x , y) ∈ A2(k) : x − y = 0 and x 6= 0}

Then each F ∈ I(X ) is a multiple of x − y , for it has to vanish on all the
point of X i.e. if we substitute x = y in f it has an infinite number of
zeros and hence it has to be identically zero, i.e. x − y divides f . Thus
I(X ) = (x − y), and it follows that

Z (I(X )) = {(x , y) ∈ A2(k) : x − y = 0} ⊃ X
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Further elementary properties

Exercises

I(Z (I)T ))) = I(T )

Z (I(Z (X ))) = Z (X )
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Question

Is it true that I(An(k)) = (0)?
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Question

Is it true that I(An(k)) = (0)?

Equivalently is the zero polynomial the only polynomial that vanishes
identically on all An(k)?
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Question

Is it true that I(An(k)) = (0)?

Equivalently is the zero polynomial the only polynomial that vanishes
identically on all An(k)?

It depends on the field k. For simplicity we start with A1(k). If k is a
finite field of characteristic p, then by Fermat’s little theorem ap = a for
all a ∈ k, hence the polynomial xp − x vanishes identically on A1(k) and
so xp − x ∈ I(A1(k)).
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Question

Is it true that I(An(k)) = (0)?

Equivalently is the zero polynomial the only polynomial that vanishes
identically on all An(k)?

It depends on the field k. For simplicity we start with A1(k). If k is a
finite field of characteristic p, then by Fermat’s little theorem ap = a for
all a ∈ k, hence the polynomial xp − x vanishes identically on A1(k) and
so xp − x ∈ I(A1(k)).

If n > 1 then

F (x1, . . . , xn) = (xp1 − x1)(xp2 − x2) · · · (xpn − xn)

vanishes on all An(k), and so belongs to I(An(k)).
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Question

Is it true that I(An(k)) = (0)?

Equivalently is the zero polynomial the only polynomial that vanishes
identically on all An(k)?

It depends on the field k. For simplicity we start with A1(k). If k is a
finite field of characteristic p, then by Fermat’s little theorem ap = a for
all a ∈ k, hence the polynomial xp − x vanishes identically on A1(k) and
so xp − x ∈ I(A1(k)).

If n > 1 then

F (x1, . . . , xn) = (xp1 − x1)(xp2 − x2) · · · (xpn − xn)

vanishes on all An(k), and so belongs to I(An(k)).

On the other hand if k is infinite I(An(k)) = (0).
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Question

If a is a proper ideal of k[x1, . . . xn] is it true that Z (a) is non void?
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Question

If a is a proper ideal of k[x1, . . . xn] is it true that Z (a) is non void?

Also in this case the answer depends on the field k.
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Question

If a is a proper ideal of k[x1, . . . xn] is it true that Z (a) is non void?

Also in this case the answer depends on the field k. For example if we take
k = Q and a(x2 + y2 + 1) then Z (a) is empty.
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Question

If a is a proper ideal of k[x1, . . . xn] is it true that Z (a) is non void?

Also in this case the answer depends on the field k. For example if we take
k = Q and a(x2 + y2 + 1) then Z (a) is empty.

On the other hand if k is algebraically closed then we will see shortly that
Z (a) is always non empty whenever a is a proper ideal of k[x1, . . . xn].
From now on we assume that k is algebraically closed.
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Hilbert’s Basis Theorem

Theorem

Every ideal in k[x1, . . . xn] is finitely generated.
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Hilbet’s Basis Theorem

Theorem

Every ideal in k[x1, . . . xn] is finitely generated.

This implies that given any ideal a ⊂ k[x1, . . . xn] we have that there exist
F1, . . . , Fd such that a = (F1, . . .Fd) and hence

Z (a) = Z (F1, . . .Fd)

so we have only to check the vanishing of a finite number of polynomials.
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Hilbert’s Nullenstellensazt (strong form)

Given an ideal in a in k[x1, . . . xn] we define
√
a, the radical of a to be

√
a =

{
F ∈ k[x1, . . . xn] : F d ∈ a for some d ≥ 1

}
Furthermore an ideal a is called a radical ideal if a =

√
a.
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Hilbert’s Nullenstellensazt (strong form)

Given an ideal in a in k[x1, . . . xn] we define
√
a, the radical of

√
a to be

√
a =

{
F ∈ k[x1, . . . xn] : F d ∈ a for some d ≥ 1

}
Theorem

Let k be an algebraically closed field. If a is an ideal of k[x1, . . . xn] then
I(Z (a)) =

√
a
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Hilbert’s Nullenstellensazt (strong form)

Given an ideal in a in k[x1, . . . xn] we define
√
a, the radical of

√
a to be

√
a =

{
F ∈ k[x1, . . . xn] : F d ∈ a for some d ≥ 1

}
Theorem

Let k be an algebraically closed field. If a is an ideal of k[x1, . . . xn] then
I(Z (a)) =

√
a

One inclusion is evident namely:

I(Z (a)) ⊇
√
a

for if F ∈
√
a, then f d ∈ a, and hence f d(P) = 0 for all P ∈ Z (a) but this

clearly imples F (P) = 0 for all P ∈ Z (a).

Valerio Talamanca (Roma Tre) Basic notions in algebraic geometry October 15th, 2021 52 / 119



Hilbert’s Nullenstellensazt (strong form)

Let An denote the set of all algebraic subset of An(k) and by Rn the set
of radical ideal in k[x1, . . . xn]. As a consequence of Hilbert’s
Nullenstellensazt we have that the map

Rn −→ An

a 7−→ Z (a)

is a bijection whose inverse is

An −→ Rn

X 7−→ I(X )
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Hilbert’s Nullenstellensazt (strong form)

Let An denote the set of all algebraic subset of An(k) and by Rn the set
of radical ideal in k[x1, . . . xn]. As a consequence of Hilbert’s
Nullenstellensazt we have that the map

Rn −→ An

a 7−→ Z (a)

is a bijection whose inverse is

An −→ Rn

X 7−→ I(X )

In particular if a is a proper ideal, then also
√
a is a proper ideal and so

Z (a) is a proper subset of An(k). In particular Z (a) is not void.
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The topology defined by algebraic sets

Recall that we can define a topology on a set X by means of its closed
subset: i.e. if we a family C = {Cα}α∈A, they define a topology on X (and
the Ci ’s are the closed sets in this topology) if and only if the family enjoys
the following properties:

X ∈ C and ∅ ∈ C.

The union of a finite number of elements of C is an element of C.

The interesection of an arbitrary collection of elements in C is an
element of C.
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The topology defined by algebraic sets

Recall that we can define a topology on a set X by means of its closed
subset: i.e. if we a family C = {Cα}α∈A, they define a topology on X (and
the Ci ’s are the closed sets in this topology) if and only if the family enjoys
the following properties:

X ∈ C and ∅ ∈ C.

The union of a finite number of elements of C is an element of C.

The interesection of an arbitrary collection of elements in C is an
element of C.

It follows that the family {Z (a) : a is a radical ideal in k[x1, . . . xn]}
defines a topology on An(k). This topology is called the Zariski topology
The open sets of this topology are, by definition, the complements of the
algebraic sets.
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Zariski Topology: an example

Let X = A1(k) which subset are Zariski closed?

Since k[x ] is a principal ideal domain any Zariski closed subset is of the
form Z (F ) for some F ∈ k[x ]. But a polynomial of degree n has at most n
distinct roots, hence all Zariski closed subset are finite subset of A1(k).

Conversely if Z is a finite subset of A1(k) say Z = {α1, . . . αn} then the
polynomial

F (x) = (x − α1) · · · (x − αn)

is such that Z (F ) = Z . Thus the Zariski closed subsets coincide with the
finite subsets of A1(k), and hence the open sets are the cofinite sets, i.e.
the sets whose complement is finite. In particular every open set is dense
and the topology is not Hausdorff.
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Irrieducible sets

Let X be a topological space. We say that X is irreducible if it is not the
union of two proper closed subset, and reducible otherwise.

Valerio Talamanca (Roma Tre) Basic notions in algebraic geometry October 15th, 2021 58 / 119



Irrieducible sets

Let X be a topological space. We say that X is irreducible if it is not the
union of two proper closed subset, and reducible otherwise.

(a) Z(y − x3) (b) Z(−2+x+x2+7y − 4xy − 5y2)

The curve in fig. (a) is irreducible, while the curve of fig. (b) is reducible
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Irrieducible sets

Theorem

Let X be a topological space. The set of irreducible subspaces of X
admits maximal elements for the inclusion relation and X is the union of
this maximal elements.

Proof To prove that the set of irreducible subspaces of X admits maximal
elements for the inclusion relation we will use Zorn’s Lemma:
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Irrieducible sets

Theorem

Let X be a topological space. The set of irreducible subspaces of X
admits maximal elements for the inclusion relation and X is the union of
this maximal elements.

The maximal elements of the set of irreducible subspace are called the
irreducible components of X .
Proof To prove that the set of irreducible subspaces of X admits maximal
elements for the inclusion relation we will use Zorn’s Lemma:

Zorn’s Lemma

If A is a partially ordered such that every chain in A has an upper bound in
A then A contains at least one maximal element.
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Irrieducible sets

Theorem

Let X be a topological space. The set of irreducible subspaces of X
admits maximal elements for the inclusion relation and X is the union of
this maximal elements.

Proof To prove that the set of irreducible subspaces of X admits maximal
elements for the inclusion relation we will use Zorn’s Lemma:

Zorn’s Lemma

If A is a partially ordered such that every chain in A has an upper bound in
A then A contains at least one maximal element.

So let X1 ⊂ X2 ⊂ . . . ⊂ Xi ⊂ Xi+1 ⊂ . . . be a chain of irreducible
subspace. We want to show that ∪iXi is also irreducible, and so the chain
has an upper bound.
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Irrieducible sets

So let X1 ⊂ X2 ⊂ . . . ⊂ Xi ⊂ Xi+1 ⊂ . . . be a chain of irreducible
subspace. We want to show that ∪iXi is also irreducible, and so the chain
has an upper bound.

So suppose that ∪iXi is reducible, i.e. there exists Y and Z proper closed
subset of ∪iXi such that Y ∪ Z = ∪iXi . Since both Y and Z proper
closed subset of ∪iXi it exists k such that Xk is not contained in Y and h
such that Xh is not contained in Z .
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Irrieducible sets

So let X1 ⊂ X2 ⊂ . . . ⊂ Xi ⊂ Xi+1 ⊂ . . . be a chain of irreducible
subspace. We want to show that ∪iXi is also irreducible, and so the chain
has an upper bound.

So suppose that ∪iXi is reducible, i.e. there exists Y and Z proper closed
subset of ∪iXi such that Y ∪ Z = ∪iXi . Since both Y and Z proper
closed subset of ∪iXi it exists k such that Xk is not contained in Y and h
such that Xh is not contained in Z .

But then for all n ≥ max{h, k} we have that Xn is not contained in Y or
Z . But then Xn ∩ Y and Xn ∩ Z are two closed proper subset of Xn such
that their union is Xn, contradicting the irreducibility of Xn

So we can use Zorn’s Lemma.
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Irrieducible sets

So we were proving

Theorem

Let X be a topological space. The set of irreducible subspaces of X
admits maximal elements for the inclusion relation and X is the union of
this maximal elements.

and we have established the existence of maximal elements.
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Irrieducible sets

So we were proving

Theorem

Let X be a topological space. The set of irreducible subspaces of X
admits maximal elements for the inclusion relation, and X is the union of
this maximal elements.

and we have established the existence of maximal elements.

Next note that the maximal elements are actually closed, this follows from

Fact

If Y ⊂ X is irreducible then also its closure is irreducible.

For if Z and W are proper closed subset of Y such that Z ∪W = Y , then
Z ∩ Y and W ∩ Y are proper closed subset of Y such that
(Z ∩ Y ) ∪ (W ∩ Y ) = Y
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Irrieducible sets
So we were proving

Theorem

Let X be a topological space. The set of irreducible subspaces of X
admits maximal elements for the inclusion relation and X is the union of
this maximal elements.

and we have established the existence of maximal elements.
Next note that the maximal elements are actually closed, this follows from

Fact

If Y ⊂ X is irreducible then also its closure is irreducible.

For if Z and W are proper closed subset of Y such that Z ∪W = Y , then
Z ∩ Y and W ∩ Y are proper closed subset of Y such that
(Z ∩ Y ) ∪ (W ∩ Y ) = Y
Finally the union of the maximal elements is all of X because the set
consisting of one point are clearly irreducible and hence contained in a
maximal irreducible subspace.
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Irrieducible sets

Lemma

If X is irreducible then every open subset is dense and irreducible
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Irrieducible sets

Lemma

If X is irreducible then every open subset is dense and irreducible

Proof Suppose U is a non empty open subset of X . If U = X there is
nothing to prove, so we suppose that U is properly contained in X . Let
Y = X \ U, then U and Y are two closed subset such that

X = U ∪ Y .
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Irrieducible sets

Lemma

If X is irreducible then every non empty open subset is dense and
irreducible

Proof Suppose U is a non empty open subset of X . If U = X there is
nothing to prove, so we suppose that U is properly contained in X . Let
Y = X \ U, then U and Y are two closed subset such that

X = U ∪ Y .

It follows that one of them must not be proper, as X is irreducible. Since
U is non empty and is not all of X we have that Y is a proper closed
subset of X , and hence U = X , i.e. U is dense in X .
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Irrieducible sets

Corollary

If X is irreducible then X is not Hausdorff
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Irrieducible sets

Corollary

If X is irreducible then X is not Hausdorff

Proof If Y is Hausdorff space then for every pair of points y1, y2 ∈ Y
there exist two open sets Y1 and Y2, with yi ∈ Yi , such that Y1 ∩ Y2 = ∅.
This cannot happen if X is irreducible as every opens set is dense and
hence the intersection of any pair of open set cannot be empty.
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Irrieducible sets

Proposition

If X is the union of finitely many irreducible subspace Z1, . . . , Zm then
every irreducible components of X coincide with one of the Zj . If, in
addition, the Zj 6⊂ Zi for all i 6= j , then Z1, . . . , Zm are the irreducible
components of X .
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Irrieducible sets

Proposition

If X is the union of finitely many irreducible subspace Z1, . . . , Zm then
every irreducible components of X coincide with one of the Zj . If, in
addition, the Zj 6⊂ Zi for all i 6= j , then Z1, . . . , Zm are the irreducible
components of X .

Proof Let Z be an irreducible component of X . Then

Z = (Z1 ∩ Z ) ∪ . . . ∪ (Z ∩ Zm)

and hence, being Z irreducible and maximal among irreducible, we have
that Z is equal to Zj . Thus every irreducible component is found among
the Zi , so if there is no inclusion relation among them each of them must
be an irreducible component.
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Irrieducible sets in An(k)

We want to characterize which algebraic set are irreducible in terms of the
ideal that defines the set
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Irrieducible sets in An(k)

We want to characterize which algebraic set are irreducible in terms of the
ideal that defines the algebraic set

Proposition

X ⊂ An(k) is irreducible if and only I(X ) is a prime ideal.
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Irrieducible sets in An(k)

Proposition

X ⊂ An(k) is irreducible if and only I(X ) is a prime ideal.

Proof Recall that an ideal a is a prime ideal, if whenever a product ab
belongs to a, then either a ∈ a or b ∈ a.
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Irrieducible sets in An(k)

Proposition

X ⊂ An(k) is irreducible if and only I(X ) is a prime ideal.

Proof Recall that an ideal a is a prime ideal, if whenever a product ab
belongs to a, then either a ∈ a or b ∈ a.

Suppose that X is not irreducible i.e.

X = X1 ∪ X2

with Xi ( X , Xi closed subset of X , (i = 1, 2).
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Irrieducible sets in An(k)

Proposition

X ⊂ An(k) is irreducible if and only I(X ) is a prime ideal.

Proof Recall that an ideal a is a prime ideal, if whenever a product ab
belongs to a, then either a ∈ a or b ∈ a.

Suppose that X is not irreducible i.e.

X = X1 ∪ X2

with Xi ( X , Xi closed subset of X , (i = 1, 2). Then

I(Xi ) ) I(X ), i = 1, 2

So we can find F1∈I (X1) \ I(X ) and F2∈I (X2) \ I(X ).
Since F1F2 vanishes on X1 ∪ X2 = X it follows that F1F2 belongs to I(X ).
yielding that I(X ) is not a prime ideal .
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Irrieducible sets in An(k)

Proposition

X ⊂ An(k) is irreducible if and only I(X ) is a prime ideal.

Proof So we have proven that if X is reducible then I(X ) is not a prime
ideal. To complete the proof we have to show that if I(X ) is not a prime
ideal then X is reducible.
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Irrieducible sets in An(k)

Proposition

X ⊂ An(k) is irreducible if and only I(X ) is a prime ideal.

Proof So we have proven that if X is reducible then I(X ) is not a prime
ideal. To complete the proof we have to show that if I(X ) is not a prime
ideal then X is reducible.
So suppose that I(X ) is not a prime ideal. Then there exist F1,F2 with
Fi /∈ I(X ), (i = 1, 2), such that F1F2∈ I(X ). Set

X1 = X ∩ Z (F1) and X2 = X ∩ Z (F2).

Then X1 and X2 are proper closed subsets of X such that X! ∪ X2 = X .
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Affine variety in An(k)

Definition

An irreducible affine algebraic set in An(k) is called an affine variety
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Affine variety in An(k)

Definition

An irreducible affine algebraic set in An(k) is called an affine variety

Note that if X is affine variety, then I(X ) is prime and hence radical, and
so Z (I(X )) = X . Similarly if p is a prime ideal of k[x1, . . . xn] then
I(Z (p)) = p.
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Affine variety in An(k)

Definition

An irreducible affine algebraic set in An(k) is called an affine variety

Theorem

Any algebraic set in An(k) is the union of a finite number of affine
varieties that are not contained in each other. Explicitly if X ⊂ An(k) is
an algebraic set then are unique X1, . . . ,Xk affine varieties such that

X = X1 ∪ X2 ∪ · · · ∪ Xk .

and Xi 6⊂ Xj , for all i , j with i 6= j .
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Affine variety in An(k)

We need to start using the fact that k[x1, . . . xn] is a Noetherian ring. One
property of Noetherian rings is the following

Fact

Let R be a Noetherian ring. Then every non empty collection of ideals
admits a maximal member.

As a consequence we have that every non empty collection of algebraic set
admits a minimal element.
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Affine variety in An(k)

We need to start using the fact that k[x1, . . . xn] is a Noetherian ring. One
property of Noetherian rings is the following

Fact

Let R be a Noetherian ring. Then every non empty collection of ideals
admits a maximal member.
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Affine variety in An(k)

We need to start using the fact that k[x1, . . . xn] is a Noetherian ring. One
property of Noetherian rings is the following

Fact

Let R be a Noetherian ring. Then every non empty collection of ideals
admits a maximal member.

As a consequence we have

Lemma

Every non empty collection of algebraic set admits a minimal element.
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Affine variety in An(k)

Lemma

Every non empty collection of algebraic set admits a minimal element.

To prove the lemma we can argue as follows: let X be a collection of
algebraic set, and consider the following collection of ideals

I =
{
a ⊂ k[x1, . . . xn] : a = I(X ) for some X ∈ X

}
Then I admits a maximal member say m. This means that if a belongs to
I and m ⊆ a then m = a. Set M = Z (m). Next recall that the map
a 7→ Z (a) is order reversing. Thus if X ∈ S is such that X ⊆ M, then

m = I(M) ⊆ I(X )

and so m = I(X ), which yields X = M, and so X is minimal.
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Affine variety in An(k)

Theorem

Any algebraic set in An(k) is the union of a finite number of affine
varieties that are not contained in each other. Explicitly if X ⊂ An(k) is
an algebraic set then there exist X1, . . .Xk affine varieties such that

X = X1 ∪ X2 ∪ · · · ∪ Xk

and Xi 6⊂ Xj , for all i , j with i 6= j . Furthermore the Xi ’s are uniquely
determined (up to the ordering).

Proof Consider the collection S of all algebraic subset of An(k) for which
one cannot find a finite number of irreducible subset whose union is X . It
has a minimal element X . Now clearly X is not irreducible and hence there
exist X1 and X2 proper closed subset of X , such that X1 ∪ X2 = X .
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Affine variety in An(k)

Proof Consider the collection S of all algebraic subset of An(k) for which
one cannot find a finite number of irreducible subset whose union is X . It
has a minimal element X . Now clearly X is not irreducible and hence there
exist X1 and X2 proper closed subset of X , such that X1 ∪ X2 = X . The
minimality of X implies that X1 and X2 are not in S. Therefore

X1 = Y1 ∪ . . . ∪ Ym and X2 = Z1 ∪ . . . ∪ Zd

where all the Yi and Zd are irreducible. But then

X = Y1 ∪ . . . ∪ Ym ∪ Z1 ∪ . . . ∪ Zd

which is a contradiction. So every algebraic set X can be covered by a
finite number of affine varieties say X1, . . . ,Xk . To get the second
condition, simply throw away any Xi such that Xi ⊂ Xj for i 6= j .
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Affine variety in An(k)

Theorem

Any algebraic set in An(k) is the union of a finite number of affine
varieties that are not contained in each other. Explicitly if X ⊂ An(k) is
an algebraic set then there exist X1, . . .Xk affine varieties such that

X = X1 ∪ X2 ∪ · · · ∪ Xk

and Xi 6⊂ Xj , for all i , j with i 6= j . Furthermore the Xi ’s are uniquely
determined (up to the ordering).

To show uniqueness, let X = Y1 ∪ . . . ∪ Ym be another such
decomposition. Then Xi = ∪j(Yj ∩ Xi ) so Xi ⊆ Yj(i) for some j(i). In the
same way one founds Yj ⊆ Xi(j), putting the two together we get

Xi ⊆ Yj(i) ⊂ Xi(j(i))

but then Xi = Xi(j(i)), and so Xi = Yj(i). Likewise each Yj is equal to
some Xi(j).
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Affine variety in A2(k)

Now we would like to completely determine the affine varieties in A2(k).

Fact

Let F and G be polynomial in k[x , y ] Suppose that F and G have no
common factor. Then Z (F ) ∩ Z (G ) consist of finitely many points.
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Affine variety in A2(k)

Now we would like to completely determine the affine varieties in A2(k).

Fact

Let F and G be polynomial in k[x , y ] Suppose that F and G have no
common factor. Then Z (F ) ∩ Z (G ) consist of finitely many points.

Proof Since F ,G have no common factor in k[x , y ] = k[x ][y ] they also
have no factor in the principal ideal domain k(x)[y ], thus there exists
R1,R2∈k(x)[y ] such that R1F + R2G = 1. Write

R1 =
N1

D1
and R2 =

N2

D2

with N1N2∈k[x , y ] and D1D2 ∈ k[x ].
Set

D = D1D2 and A1 = D2N1, A2 = D1N2
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Affine variety in A2(k)
Proof Since F ,G have no common factor in k[x , y ] = k[x ][y ] they also
have no factor in the principal ideal domain k(x)[y ], thus there exists
R1,R2∈k(x)[y ] such that R1F + R2G = 1. Write

R1 =
N1

D1
and R2 =

N2

D2

with N1N2∈k[x , y ] and D1D2 ∈ k[x ].
Set

D = D1D2 and A1 = D2N1, A2 = D1N2

Then A1A2 ∈ k[x , y ], and

D = DR1F + R2G = D
(N1

D1
F +

N2

D2
G
)

= A1F + A2G

Thus if (a, b)∈Z (F ,G ), then D(a) = 0. But D has only finitely many
zeros. Thus there are only finitely many choices for the x-coordinates of
points in Z (F ,G ), and similarly for the y -coordinates.
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Affine variety in A2(k)

Now we would like to completely determine the affine varieties in A2(k).

Fact

Let F and G be polynomial in k[x , y ] Suppose that F and G have no
common factor. Then Z (F ) ∩ Z (G ) consist of finitely many points.

An affine curve in A2(k) is an algebraic set of the form Z (F ) with
F ∈ k[x , y ] irreducible
As consequence we have that the only proper affine variety in A2(k) are:

Points

Affine curves

Valerio Talamanca (Roma Tre) Basic notions in algebraic geometry October 15th, 2021 95 / 119



Affine variety in A2(k)

One more consequence of

Fact

Let F and G be polynomial in k[x , y ] Suppose that F and G have no
common factor. Then Z (F ) ∩ Z (G ) consist of finitely many points.

is

Corollary

Let F belong to k[x , y ]. Suppose that F =
∏n

i=1 F
ni
i is the decomposition

of F into distinct irreducible factor in k[x , y ], then Z (F1), . . . , Z (Fn) are
the irreducible components of Z (F ) and I(Z (F )) = (F1 · · ·Fn).

Valerio Talamanca (Roma Tre) Basic notions in algebraic geometry October 15th, 2021 96 / 119



Affine variety in A2(k)

Fact

Let F and G be polynomial in k[x , y ] Suppose that F and G have no
common factor. Then Z (F ) ∩ Z (G ) consist of finitely many points.

Corollary

Let F belong to k[x , y ]. Suppose that F =
∏d

i=1 F
ni
i is the decomposition

of F into distinct irreducible factor in k[x , y ], then Z (F1), . . . , Z (Fn) are
the irreducible components of Z (F ) and I(Z (F )) = (F1 · · ·Fn).

Proof: We have that every pair Fi ,Fj has no component in common (as
they are irreducible and distinct). So Z (Fi ) ∩ Z (Fj) consist in a finite set
points, so none of them is contained in another. Furthermore Z (Fi ) is
irreducible for all i ′s, and

Z (F ) = ∪di=1Z (Fi ).

It follows Z (F1), . . . , Z (Fn) are the irreducible components of Z (F ).
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Affine variety in A2(k)

Corollary

Let F belong to k[x , y ]. Suppose that F =
∏d

i=1 F
ni
i is the decomposition

of F into distinct irreducible factor in k[x , y ], then Z (F1), . . . , Z (Fn) are
the irreducible components of Z (F ) and I(Z (F )) = (F1 · · ·Fn).

Proof: We have that every pair Fi ,Fj has no component in common (as
they are irreducible and distinct). So Z (Fi ) ∩ Z (Fj) consist in a finite set
points, so none of them is contained in another. Furthermore Z (Fi ) is
irreducible for all i ′s, and

Z (F ) = ∪di=1Z (Fi ).

It follows Z (F1), . . . , Z (Fn) are the irreducible components of Z (F ).
Then

I(Z (F )) = I(∪di=1Z (Fi )) = ∩di=1 I(Z (Fi )) = ∩di=1(Fi ) = (F1 · · ·Fn)
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Polynomial functions and rational functions

Definition

Let X ⊂ An(k) be an affine variety. The quotient ring
OX = k[x1, . . . xn]/ I(X ) is called the coordinate ring of X

To any element h of OX we can associate a polynomial function on X ,
simply setting h(P) := g(P), where g ∈ k[x1, . . . xn] is any poynomial in
k[x1, . . . xn] that reduces to h modulo I(X ).
Moreover I (X ) is a prime ideal and so OX is an integral domain. Its
quotient ring is denoted by k(X ) and is called the function field of X .
To each φ∈k(X ), we can associate a rational function on X , i.e. a
function that is not defined for every point of X but only on a dense
subset. Given P ∈ X we say that φ is defined at P if it is possible to find
a ”denominator” for φ that doesn’t vanish at P, i.e. if we can write
φ = h1/h2 with h1, h2∈OX and h2(P) 6= 0.
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Polynomial functions and rational functions

So suppose that φ∈k(X ), is defined at P ∈ X , then we define its value
φ(P), simply by setting:

φ(P) = h1(P)/h2(P)

Where φ = h1/h2 We have to check that φ(P) does not depend on the
choice of h1 and h2. So suppose that g1 and g2 belonging to OX are also
such that φ = g1/g2 and h2(P) 6= 0. Then

h1/h2 = g1/g2 =⇒ h1g2 − g1h2 ∈ I(X )

Therefore

0=(h1g2−g1h2)(P)=h1(P)g2(P)−g1(P)h2(P)⇒h1(P)/h2(P)=g1(P)/g2(P)
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Polynomial functions and rational functions

So suppose that φ∈k(X ), is defined at P ∈ X , then we define its value
φ(P), simply by setting:

φ(P) = h1(P)/h2(P)

Where φ = h1/h2 We have to check that φ(P) does not depend on the
choice of h1 and h2. So suppose that g1 and g2 belonging to OX are also
such that φ = g1/g2 and h2(P) 6= 0. Then

h1/h2 = g1/g2 =⇒ h1g2 − g1h2 ∈ I(X )

Therefore

0=(h1g2−g1h2)(P)=h1(P)g2(P)−g1(P)h2(P)⇒h1(P)/h2(P)=g1(P)/g2(P)

If P ∈ X is a point in which φ is not defined then P is called a pole of φ.
The set of poles of a rational function φ is called the pole set of φ and is
denote by P(φ).
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Polynomial functions and rational functions

Example

Let F (x , y) = y2 − x3 + x and let C be the associated affine curve.
Consider the rational function φ = x

y∈k(C) By the way in which has been
presented f is regular at all point P = (a1, a2) of CF for which a2 6= 0, so
it is already regular at all point but P0 = (0, 0), P1 = (1, 0), P2 = (−1, 0)
. On the other hand

f =
x

y
=

x

y

y

y
=

xy

y2
=

xy

x3 − x
=

y

x2 − 1
mod (F )

showing the regularity of φ at P0 (actually P0 is a zero of f ). The
remaining two points are true poles of f

Note that working mod (F ) means for example that

y2 = x3 − x mod (F )

Valerio Talamanca (Roma Tre) Basic notions in algebraic geometry October 15th, 2021 102 / 119



The local ring at a point

Recall that a ring is called local if it has a unique maximal ideal.

Let X ⊂ An(k) be an affine variety. Given P ∈ X thelocal ring of X at P,
is the set of all rational function on X that are defined at P and it will be
denoted by OX ,P ⊆ k(X ).
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The local ring at a point

Recall that a ring is called local if it has a unique maximal ideal.

Let X ⊂ An(k) be an affine variety. Given P ∈ X the local ring of X at
P, is the set of all rational function on X that are defined at P and it will
be denoted by OX ,P ⊆ k(X ).

Lemma

OX ,P ⊆ k(X ) is a local ring

Proof Consider m = {φ∈OX ,P : φ(P) = 0}. Clearly m is an ideal of
OX ,P . Moreover every ψ∈OX ,P \m is invertible. But then every ideal of
OX ,P different of (1) consist of non units and so is contained in m.
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The local ring at a point

Recall that a ring is called local if it has a unique maximal ideal.

Let X ⊂ An(k) be an affine variety. Given P ∈ X the local ring of X at
P, is the set of all rational function on X that are defined at P and it will
be denoted by OX ,P ⊆ k(X ).

Lemma

OX ,P ⊆ k(X ) is a local ring

Proof Consider m = {φ∈OX ,P : φ(P) = 0}. Clearly m is an ideal of
OX ,P . Moreover every ψ∈OX ,P \m is invertible. But then every ideal of
OX ,P different of (1) consist of non units and so is contained in m.

So we have the following chain of inclusions OX ⊂ OX ,P ⊂ k(X )
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The local ring at a point

Proposition

Let X ⊂ An(k) an irreducible affine set.

a) Let φ∈k(X ). Then the pole set of φ is an affine subset of X .

b) OX =
⋂

P∈X OX ,P

Proof a) Let φ∈k(X ) and set Jφ = {G∈k[x1, . . . xn] : Gφ∈OX}, where
G denotes the class of G modulo I(X ). Then Jφ is an ideal of k[x1, . . . xn]
which contains I(X ). Thus Z (Jφ) ⊂ X .
Now P∈Z (Jφ) if and only if f is not defined at P. To see this note that if
φ is defined at P then φ = F/G with F ,G∈k[x1, . . . xn] and G non
vanishing at P and hence Gφ = F∈OX and so P /∈Z (Jφ). Conversely if P
does not belong to Z (Jφ), then there exist G∈Jφ that does not vanish at
P. Then, by definition of Jφ, φ = F/G and so φ is defined at P.
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The local ring at a point

It remains to show part b), namely

OX =
⋂
P∈X
OX ,P
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The local ring at a point

It remains to show part b), namely

OX =
⋂
P∈X
OX ,P

Clearly OX ⊆
⋂

P∈X OX ,P . To prove the reverse inclusion note that if f is
defined at every point then Z (Jf ) is empty, where Jf is as in part a), i.e.
Jf = {G∈k[x1, . . . xn] : Gf ∈OX}. Hence (by the nullestellenstaz) 1
belongs to Jf . But then f = 1 · f ∈OX .
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Polynomial maps

Let X ⊂ An and Y ⊂ Am be two affine varieties. A map

T : X → Y

is said to be a polynomial map if there exists T1, . . . , Tm∈k[x1, . . . xn]
such that for each P = (a1, . . . an)∈X we have

T (P) = (T1(a1, . . . an), . . . , Tm(a1, . . . an)).
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Polynomial maps
Let X ⊂ An and Y ⊂ Am be two affine varieties. A map T : X → Y is
said to be a polynomial map if there exists T1, . . . , Tm∈k[x1, . . . xn]
such that for each P = (a1, . . . an)∈X we have

T (P) = (T1(a1, . . . an), . . . , Tm(a1, . . . an)).

Note that such polynomial mapping induces a homomorphism

T ∗ : OY → OX

which is defined as follows: first we get a homomorphism
T : k[y1, . . . ym]→ k[x1, . . . xn], by setting

T (G ) = G (T1, . . . ,Tm).

Next note that T (I(Y )) ⊂ I(X ). For if P = (a1, . . . an)∈X and G ∈ I (Y ),
then

(T (G )) = G (T1(a1, . . . an), . . . ,Tm(a1, . . . an))

which vanishes because (T1(a1, . . . an), . . . ,Tm(a1, . . . an)) belongs to Y .
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Polynomial maps

Since T (I(Y )) ⊂ I(X ), we get a homorphism between the quotients

T ∗ : OY = k[y1, . . . , ym]/ I(Y )→ k[x1, . . . xn]/ I(X ) = OX

Conversely given an homomorphism γ : OY → OX , we can construct a
polynomial map as follows:
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Polynomial maps

Since T (I(Y )) ⊂ I(X ), we get a homomorphism between the quotient rings

T ∗ : OY = k[y1, . . . , ym]/ I(Y )→ k[x1, . . . xn]/ I(X ) = OX

Conversely given an homomorphism γ : OY → OX , we can construct a
polynomial map as follows:
choose Ti∈k[x1, . . . , xn] so that the class modulo I (X ) of Ti coincide
with the class of γ(xi ) (here xi denotes the class of xi modulo I (Y )).
Then T = (T1, . . . , Tm) is a polynomial map from An to Am. We have to
show that it maps X to Y .
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Polynomial maps
Conversely given an homomorphism γ : OY → OX , we can construct a
polynomial map as follows:
choose Ti∈k[x1, . . . , xn] so that the class modulo I (X ) of Ti coincide
with the class of γ(yi ) (here yi denotes the class of yi modulo I(Y )).
Then T = (T1, . . . , Tm) is a polynomial map from An to Am. We have to
show that it maps X to Y . Consider the homomorphism

T : k[y1, . . . , ym]→ k[x1, . . . , xn]

defined as above. Our choice of Ti ’s implies that if F∈I (Y ) then

T (F ) = F (T1, . . . , Tm) mod I(X )

= F (γ(y1), . . . γ(ym)) mod I(X )

= γ(F ) mod I(X )

= 0 mod I(X ).

Hence T (I (Y )) ⊂ I(X ).
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Polynomial maps

Given γ : OY → OX , we have constructed a polynomial map
T : An → Am, such that T : k[y1, . . . , ym]→ k[x1, . . . , xn] has the
property that T (I (Y )) ⊂ I(X ).
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Polynomial maps

Given γ : OY → OX , we have constructed a polynomial map
T : An → Am, such that T : k[y1, . . . , ym]→ k[x1, . . . , xn] has the
property that T (I (Y )) ⊂ I(X ).

We want to show that this implies that T (X ) ⊂ Y .
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Polynomial maps

Given γ : OY → OX , we have constructed a polynomial map
T : An → Am, such that T : k[y1, . . . , ym]→ k[x1, . . . , xn] has the
property that T (I (Y )) ⊂ I(X ).

We want to show that this implies that T (X ) ⊂ Y .

So suppose P = (a1, . . . an) belong to X . If T (P) does not belong to Y it
must exists G ∈ I(Y ) such that G (T (P)) 6= 0. But then T (G ) does not
vanish at P, i.e. T (G ) does not belong to I(X ) which contradicts the fact
that T (I (Y )) ⊂ I(X ).
Thus T restricts to a polynomial map from X to Y , and T ∗ = γ
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Polynomial maps

Fact

Thus there is a one to one correspondence between polynomial maps from
X to Y and ring homomorphisms from OY to OX .
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Polynomial maps

Fact

Thus there is a one to one correspondence between polynomial maps from
X to Y and ring homomorphisms from OY to OX .

A polynomial map T : X → Y is called an isomorphism if it has an
inverse S : Y → X , which is also a polynomial map.

Corollary

Two affine varieties X and Y are isomorphic if and only if the
corresponding coordinate rings OX and OY are isomorphic as rings.
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Example of a polynomial map
Let F = y2 − x6 − 2x4 − 2x2 − 1 and G = y2 − x3 − 2x2 − 2x − 1. Then
the map

φ : CF −→ CG

P = (a1, a2) 7−→ φ(P) = (a21, a2)

is a polynomial map (indeed T1(x , y) = x2 and T2(x , y) = y). In the
figure below the two red points are mapped by φ in the red point on the
right. Same goes for the green points.
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