| The aim of this school is to introduce students to some aspect of
(algorithmic) number theory and arithmetic geometry and the very
fruitful interplay between those subjects and the applied disciplines of
cryptography and coding theory.
This interplay has been very fruitful in the recent and not so
recent past, notable examples being the
construction of cryptosystems using elliptic curves over finite fields
and the construction of codes using algebraic varieties.
Our program consists of four courses on algorithmic number theory,
elliptic curves, algebraic coding theory and isogeny based
cryptography, respectively. These courses will introduce the students to a variety
of tools in number theory and arithmetic geometry as well as their
applications in cryptography and coding theory. Topics will include
class groups of number fields and Buchmann's subexponential
algorithm for computing them, the Mordell-Weil theorem for elliptic
curves over number fields, Reed-Muller code and Goppa code, algorithms
to compute and evaluate isogenies of elliptic curves.
Every course will combine theoretical and practical aspects:
exercises and programming sessions will be held in all four courses,
putting students' proactive learning at the center of this project.
Coordinators
- Benjamin Wesolowski , external coordinator (Université de Bordeaux)
- Nguyen Thi Nga, local coordinator (Ho Chi Minh City University of Education)
Organizing Committee
- Dung Duong (University of Wollongon)
- Nguyen Thi Nga (Ho Chi Minh City University of Education)
- Thuy Pham (Ho Chi Minh City University of Education)
- Valerio Talamanca (Università Roma Tre)
- Ha Tran (Concordia University of Edmonton)
|
|