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1 Introduction

In the first part of his thesis [1], Angelakis studies absolute abelian
Galois groups Ax = Gal(K®/K) of number fields K using class field
theory. It was already known that for imaginary quadratic number
fields K, K’ we can have Ax = Ak, as topological groups, even if K
and K’ are not isomorphic as number fields (Onabe, 1976). Angelakis’
striking and very explicit result is the following;

Theorem 1.1 There exist “many” imaginary quadratic number fields
K having

A 2 U S 72« ]_[ Z/mZ
m=1

as topological groups.

In order to make more precise what “many” means, data can be taken
from Watkins’ table. For example, the imaginary quadratic number
fields K having prime class number lower than 100. From these 2356
number fields, 2291 have absolute abelian Galois group Ax isomorphic
to U. Numerically, it seems that an imaginary quadratic number field K
of class number p has Ax = U with probability 1 — 117 This observation
leads to:




Conjecture 1.2 100% of all imaginary quadratic number fields K of
prime class number have Ag = U.

Not much can be proven here, as distribution results both for the
occurrence of prime class numbers and for the average splitting behavior
in the analysis of Ak, are lacking. However the same techniques can
be applied to a different problem that, although at first sight more
complicated, does yield proven theorems.

2 Elliptic curves over K

In class field theory, Galois groups arise as quotients of the multiplica-
tive group Aj of K-ideles. Here the interest lies in the adelic point
group E(Ag) of an elliptic curve E defined over a number field K. The
distribution of E(K) as finitely generated abelian group is a very hard
problem, even over Q.

Even though Ak = []; K, is a restricted product of all completions
K, of K, the adelic point group of an elliptic curve E/K equals

E(ag) = | | EKy).
P

For “large” p there are many different possibilities for the p-adic group
E(Ky,). Still, the product is surprisingly rigid:

Theorem 2.1 Let K be a number field of degree n. Then for ‘almost
all’ elliptic curves E /K, the adelic point group E(Ak) is topologically
isomorphic to the universal group

&, = (R/Z)" x 7" x ]_[ Z/mZ

m=1

associated to the degree n of K.



Based on the counting of integral Weierstrass models as in [4], the
notion of ‘almost all’ in this theorem is the following one: for elements
a and b in the ring of integers Ok of K satisfying A(a, b) = —16(4a> +
27b%) # 0, we write E(a, b) for the elliptic curve defined by the affine
Weierstrass equation y2 = x3 4+ ax + b. Now fix a norm ||.|| on
R ® O = RMK:Q Then for any positive real number X, the set
Bx of elliptic curves E(a, b) with ||(a, b)|| < X is finite. We say that
almost all elliptic curves over K have some property, if the fraction
of elliptic curves E(a, b) in Bx having that property tends to 1 when
X € R, tends to infinity.

Our notion of ‘almost all’ still allows for large numbers of elliptic
curves E/K to have adelic point groups different from the universal
group in Theorem 2.1, as the following theorem states.

Theorem 2.2 Let K be a number field of degree n. Then there exist
infinitely many elliptic curves E/K that are pairwise non-isomorphic
over an algebraic closure of K, and for which E(Ak) is a topological
group not isomorphic to &,,.

The adele ring of K naturally decomposes as a product Ax = A X
A?(“, in which A? is the product of the archimedean completions of K,
and the ring of finite K-adeles Af};‘ = [1; Ky is the restricted product
(in the sense explained above) of the non-archimedean completions
of K. The adelic point group of an elliptic curve E/K decomposes
correspondingly as a product

E(Ag) = E(AD) x E(AIM, (1)

The best strategy is to deal with these factors separately.
3 The Structure of E(Ag)

Every completion of K at an infinite prime p of K is isomorphic to either
R or C, depending on whether p is real or complex. For p complex



and E/K an elliptic curve, E(K,) is a topological group isomorphic to
(R/Z)?, by the well-known fact that we have E(K,) = C/A for some
lattice A C C by the complex analytic theory.

For p real and E/K an elliptic curve, there are two possible types
of groups E(K,), and they may be distinguished by looking at the
discriminant Ag of the elliptic curve. The sign of A(E) is well-defined
for every real prime p : K — R of K, and for such p we have

R/Z, if A(E) <, 05

. 2
R/ZXZ[2Z, if A(E) >, 0.

E(K,) = {

The following is easily proved

Proposition 3.1 Let K be a number field of degree n, and E/K an
elliptic curve with discriminant Ag € K* /(K V2 Then there exists an
isomorphism of topological groups

E(AY) = (2/2Z)" x (R/Z)". 3)

Here r < n is the number of real primes v of K for which we have
A(E) >, 0.

Let p|p be a finite prime of a number field K, and E an elliptic
curve defined over K. In explicit terms, E can be given by a minimal
Weierstrass equation with coefficients in O,. In this way a continuous
reduction map ¢, : E(K,) — E(kp), from E(K,) to the finite set of
points of the curve E described by the reduced Weierstrass equation
over the residue class field k, = O/p, is obtained. The set of points
in the non-singular locus E“s(kp) of E is contained in the image of
¢, by Hensel’s lemma, and it inherits a natural group structure from
E(Ky,). Writing Eo(Ky) = ¢! [l_?“s(k,,)], yields the exact sequence of
topological groups

1 - Ei(Ky) — Eo(Kp) — E™(ky) > 1. )

The kernel of reduction E; (K,) is a subgroup of finite index in E(K}).
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For primes of good reduction, we have Eo(K,) = E(K,), and
E“S(kp) =E (ky) is the point group of the elliptic curve E = (E mod p)
over k,. For primes of bad reduction, Ey(K}) is a strict subgroup of
E(Ky), but it is of finite index in E(K,) by [3, Chapter VII, Corollary
6.2.]

Lemma 3.2 Let T, be the torsion subgroup of E(K,). Then T, is a
finite group, and E(K,)/T, is a free Z,-module of rank [K, : Q,].

If v is a prime of good reduction for E, then there exist an isomor-
phism

T;"’"'P ~ E(kp)non-l?

between the maximal subgroups of T, and E (ky) that are of order
coprime to p = char(ky).

Taking the product over all non-archimedean primes p of K, and
using the fact that the sum of the local degrees at the primes over p in
K equals [K : Q], one gets the following.

Lemma 3.3 For the group of adelic points of an elliptic curve E over
a number field K, there is an isomorphism of topological groups

E(K) =75V x[ |, (5)
p

with T, C E(K,) the finite torsion subgroup of E(K,).

In order to describe any countable product T of cyclic groups, one
can write each of the cyclic constituents of T as a product of cyclic
groups of prime power order to arrive at the standard representation

]—[ ﬁ(Z/{’kZ)e(f’k). ©6)

¢ prime k=1

T

IR

The exponents e (¢, k) can intrinsically be defined in terms of 7" as

e(€, k) = dimg, T[¢*]/ (167 + €T1E541T) 7)
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so any two groups written in this standard representation (6) are iso-
morphic if and only if their exponents e(¢, k) coincide for all prime
powers £k,

The Fe-dimensions e(€, k) in (7) are either finite, in which case
e(¢, k) is a non-negative integer, or countably infinite. In the latter case
write e(¢, k) = w. In the case where e(¢, k) = w for all prime powers
£k, the group under consideration is

Tp = 1—[ Z/mZ (8)
m=1

occurring in Theorem 2.1.

For the product T = [], 7, of local torsion groups at the finite

primes p that occurs in Lemma 3.3, the exponents e({, k), for the
number of cyclic summands of prime power order in the standard
representation (6) of Tg, have to be determined.
_Inthe analogous situation of the closure Tk of the torsion subgroup of
O in [2, Section 2.3] that one had e(¢, k) = w for all but finitely many
prime powers £*, and the ‘missing’ prime powers were characterized in
terms of the number of exceptional roots of unity in K. In the elliptic
situation, the cyclotomic extension of K generated by the £*-th roots of
unity will be replaced by the ¢*-division field

Zp (%) € K (E[F)(K)) )

of the elliptic curve E. This is the finite Galois extension of K obtained
by adjoining the coordinates of all £-torsion points of E to K. More
precisely, the following holds:

Lemma 3.4 Let E/K be an elliptic curve, and €° > 1 a prime power
for which the inclusion

Ze (%) ¢ Zg(tFh

of division fields is strict. Then e({, k) = w in the standard representa-
tion (6) of the group T.
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It follows from Lemmas 3.3 and 3.4 that for elliptic curves E having
the property that for all primes ¢, the tower of £-power division fields
has strict inclusions

Ze(0) S ZE() S ZE(Y S - S Zp(tF) ¢ -+ (10)

at every level, the group Tg is the universal group [];°_, Z/mZ for
which e({, k) = w in the standard representation (6).
The structure of E(Ag) is determined by the Galois representation

pE : Gal(K/K) — A = Aut(E(K)'™)

describing the action of the absolute Galois group of K by group
automorphisms on the group E(K)'" of all torsion points of E. The
group A can be explicitly describe as

A = Aut(E(K)™") = lim GL,(Z/nZ) = GL,(Z),

and pg is a continuous homomorphism of profinite groups. The image
of Galois for the representation pg is the subgroup

G = pp[Gal(K/K)] C A.

For K= Q, Angelakis in [1, Section 4.4] uses a result of Nathan Jones
to show that ‘almost always’ one has E(Ag) = &.

For K # Q using that GL, (z) & Z* and denoting by Hg the Galois
group Gal(K(£*)/K) (see the figure below), it follows that the image
G C det_l[HK]; this time, one can use the result of Zywina [4] to
get that ‘almost always’ the image G = det™![Hk], which implies that
for every prime power £% > 1 the inclusion Zg(£%) c Zg(£5*Y) is
strict. From Lemma 3.4 one gets that e(£, k) = w for T in the standard
representation (6). So putting (1), (3), (5) and (8) together, the group
E(Ak) of adelic points of ‘almost all’ elliptic curves E/K, with n the
degree of K, is isomorphic to the “generic group”

& = (R/Z)" x (Z)" x ]_[ Z/mZ. (11)
m=1
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