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1 Introduction

This is a report of the results obtained in joint work PieterMoree (Bonn)
and Ioulia Baoulina (Moscow), starting by providing background. For
the details see [1].

For natural numbers m, k > 1 we consider the power sum

Sk (m) = 1k + 2k + · · · + (m − 1)k .

For k = 1, 2, 3, Sk (m) equals, respectively,

m(m − 1)
2

,
(m − 1)m(2m − 1)

6
,

m2(m − 1)2

4
.

In the 17th century J. Faulhaber (1580-1635) realized that the power
sums can be, in essence, expressed as polynomials in S1(m). Namely,
there exists polynomials Fk and Gk such that

Sk (m) =



Fk (S1(m)) with deg(Fk ) = (k + 1)/2 if k is odd;
S2(m)Gk (S1(m)) with deg(Gk ) = (k − 2)/2 if k is even.
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The following theorem expresses the power sum Sk (m) in terms of
Bernoulli numbers Bk , which are defined by the identity

t
et − 1

=

∞∑
k=0

Bk
tk

k!
.

Theorem 1 (Faulhaber) For all positive integers m and k, we have

Sk (m) =
1

k + 1

k∑
j=0

(
k + 1

j

)
Bjmk+1−j .

E. Kummer in 1850 gave the following definition of an irregular
prime.

Definition 2 Write Bk =
uk
vk

with (uk, vk ) = 1. An odd prime p is
called irregular if p | uk for some k ∈ {2, 4, . . . , p − 3}, and the pair
(k, p) is called an irregular pair. An odd prime is called regular if it
is not irregular.

In 1851, Kummer obtained the following congruence, which plays an
important role in the development of the theory of p-adic zeta functions.

Theorem 3 (Kummer) If ` ≡ k . 0 (mod p − 1), then

B`
`
≡

Bk

k
(mod p).

Furthermore, he proved Fermat’s Last Theorem for regular prime ex-
ponents.

Theorem 4 (Kummer) If p is regular, then xp + yp = zp has only
trivial solutions.

In his work on Fermat’s Last Theorem, Kummer also showed that p is
regular when the class number hp = h(Q(ζp)) of the pth cyclotomic
field is not divisible by p.
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Conjecture 5 (Kellner, 2011) [3] Let m and k be positive integers
with m > 3. Then the ratio

Sk (m + 1)
Sk (m)

is an integer if and only if (m, k) ∈ {(3, 1), (3, 3)}.

Hence, since Sk (m + 1) = Sk (m) + mk , we have

Sk (m + 1)
Sk (m)

∈ Z iff
mk

Sk (m)
∈ Z.

Kellner’s conjecture is thus equivalent with the following one (in a
moment we will see what Erdős and Moser have to do with it).

Conjecture 6 (Kellner–Erdős–Moser) Let a, k,m be positive integers
with m > 3. Then

aSk (m) = mk ⇐⇒ (a, k,m) ∈ {(1, 1, 3), (3, 3, 3)}.

In case m = 3 we have aSk (3) = 3k and it follows that a = 3e for
some e ≥ 0. Then 1+ 2k = 3k−e, which has as only solutions 1+ 2 = 3
and 1 + 23 = 32 (as was already known in the Middle Ages).

In case a = 1, we obtain the following special case of the Kellner-
Erdős-Moser conjecture.

Conjecture 7 (Erdős, 1950) The Diophantine equation

1k + 2k + · · · + (m − 1)k = mk (1)

has only one solution, namely 1 + 2 = 3.

A few years after Erdős made his conjecture L. Moser proved the
following theorem.

Theorem 8 (Moser, 1953) [7], cf. [4] If (m, k) is a solution of (1)
with k > 2, then m > 10106 .
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The lower bound for m can be sharpened to m > 109·106 , see P. Moree
[4]. In 2011, Y. Gallot, P. Moree and W. Zudilin [2] using completely
different methods again sharpened the lower bound.

Theorem 9 [2] If (m, k) is a solution of (1) with k > 2, then m >

10109 .

For the general case aSk (m) = mk , in 2015, I. Baoulina and P.Moree
[1] established the following results.

Theorem 10 If aSk (m) = mk with m > 3, then

• a has no regular prime divisors;

• a = 1 or a > 1500;

• m has no regular prime divisors;

• k,m > 1082;

• k,m > 109·106 if m ≡ 1 (mod 3);

• k,m > 104·1020 if m ≡ 1 (mod 30).

Theorem 11 Suppose that (m, k) is a non-trivial solution of aSk (m) =
mk and p is a prime dividing m. Then

• p is an irregular prime;

• p2 | uk;

• k ≡ r (mod p − 1) for some irregular pair (r, p).

In case a = 1 this result is due to P.Moree, H. te Riele and J. Urbanowicz
[6].

Corollary 12 If a has a regular prime divisor, then the equation

aSk (m) = mk

has only trivial solutions.
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In 1915, K. L. Jensen proved the following theorem.

Theorem 13 There are infinitely many primes p ≡ 5 (mod 6) that are
irregular.

Note that it is still not knownwhether there are infinitelymany regular
primes. Let us define

πi (x) := #{p 6 x : p is irregular}.

In 1954, C. L. Siegel provided an heuristic argument to justify the
conjecture that

πi (x) ∼
(
1 −

1
√

e

)
π(x) ∼ 0.39...

x
log x

.

We will make the following weaker conjecture.

Conjecture 14 There exists δ ∈ (0, 1) such that

πi (x) < (1 − δ)
x

log x
as x → ∞.

Let I be the set of integers composed solely of irregular primes. Sup-
pose that conjecture (14) holds true. The standard theory of the average
behaviour of arithmetical functions yields that I (x) � x(log x)−δ . On
combining this estimate and Corollary 12 we then obtain the following
result.

Proposition 15 Under Conjecture 14 the set of integer ratios that are
of the form Sk (m + 1)/Sk (m) with m ≥ 3 has zero natural density.

Wenow briefly consider how to deal with aSk (m) = mk for a prescribed
a.
A pair (t, q)a with q a prime and 2 6 t 6 q−3 even is called helpful

if q - a and, for every c = 1, 2, . . . , q − 1, we have

aSt (c) . ct (mod q).

If q is an irregular prime, we require in addition that (t, q) should not
be an irregular pair.
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Lemma 16 [1] If (t, q)a is a helpful pair and (m, k) a solution of

aSk (m) = mk

with k even, then k . t (mod q − 1).

Suppose that 1 < a 6 1500. Then the equation aSk (m) = mk has
no non-trivial solutions except possibly when a is an irregular prime or
a = 37 × 37. We have π(1500) = 239, πi (1500) = 90 and 90

239 ≈ 0.38.

Example 17 Consider 673Sk (m) = mk; (408, 673), (502, 673) are the
irregular pairs.
Reduction modulo 5:

• 3Sk (m) ≡ mk (mod 5)

• k ≡ 502 (mod 672) ⊂ k ≡ 2 (mod 4)

• (2, 5)3 is helpful

Reduction modulo 17:

• 10Sk (m) ≡ mk (mod 17)

• k ≡ 408 (mod 672) ⊂ k ≡ 8 (mod 16)

• (8, 17)10 is helpful

So, the equation has no solutions.

2 Start of Moser’s proof of Theorem 8

Consider a prime p so that mk takes a simple form modulo p. The most
obvious choice is to take p to be a prime divisor of m−1. On using that
the power sum as a function of k is periodic modulo p, the equation (1)
reduces to

Sk (m) ≡
m − 1

p
(1k + 2k + · · · + (p − 1)k ) ≡ mk ≡ 1 (mod p). (2)
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Proposition 18 [4] Let p | m − 1 be a prime. Modulo p we have

Sk (p) ≡



−1 if p − 1 divides k;
0 otherwise.

By the proposition we have Sk (p) ≡ −1 (mod p), and hence by (2)
we must have

m − 1
p
+ 1 ≡ 0 (mod p).

We conclude that m − 1 must be squarefree and hence that∏
p |m−1

(
m − 1

p
+ 1

)
≡ 0 (mod m − 1),

On expanding the product we obtain∏
p |m−1

(
m − 1

p
+ 1

)
= 1 +

∑
p |m−1

m − 1
p
+

∑
p1,p2 |m−1
p1,p2

(m − 1)2

p1p2
+ · · · ,

where the sum involving the primes p1, p2 and the sums not indicated
involving three primes or more are divisible by m−1. Hence we obtain∑

p |m−1

m − 1
p
+ 1 ≡ 0 (mod m − 1),

which on division by m − 1 gives∑
p |m−1

1
p
+

1
m − 1

∈ Z>1. (3)

Writing the equation Sk (m) = mk as Sk (m + 2) = 2mk + (m + 1)k and
using the proposition, we get∑

p |m+1

1
p
+

2
m + 1

∈ Z>1. (4)
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By similar ad hoc arguments one is led to the following two conclusions:∑
p |2m−1

1
p
+

2
2m − 1

∈ Z>1; (5)

∑
p |2m+1

1
p
+

4
2m + 1

∈ Z>1. (6)

On adding the four equations (3), (4), (5) and (6), we obtain∑
p |M

1
p
+

1
m − 1

+
2

m + 1
+

2
2m − 1

+
4

2m + 1
> 3

1
6
,

where M = (m2−1)(4m2−1)/12. Using the fact that
∑

p6107
1
p < 3.16,

we find M >
∏

p6107 p. This gives m > 10106
.

Details of the proof can be found in P. Moree [4] and L. Moser [7].
The title of [4] refers to the four, in an ad hoc way derived, equations
(3), (4), (5) and (6) ("the four mathemagical rabbits") and the fact that
they can be actually obtained from one theorem ("the top hat").
For a survey of work on the Erdős-Moser equation the reader can

consult [5].

3 Challenges

• Can one use that p2 | uk (with p | a), rather than p | uk?

• Show that Conjecture 7 implies Conjecture 6.

• Write a program to deal with aSk (m) = mk for a given a.

• Show that if Sk (m) = bmk , then 120 | k.

• Study the equation aSk (m) = bmk .
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