

Pietro Mercuri New results on the Class Number One problem for Functions Fields

written by Floriana Amicone, Alessandro Boni and Andrea Di Lorenzo

Let p be a prime number and let q be a power of p. This talk was devoted to the classification of algebraic function fields in one variable over the finite field \mathbb{F}_q with class number one. An immediate consequence of the Riemann-Roch theorem is that every algebraic function field in one variable over \mathbb{F}_q with genus 0 has class number 1. In 1971 Mac Rae classified algebraic function fields in one variable over \mathbb{F}_q with positive genus and class number 1 having rational places. In 1972 Madan and Queen gave a full list of zeta functions of the algebraic function fields in one variable over \mathbb{F}_q with positive genus and class number 1. They also proved that an algebraic function field in one variable over \mathbb{F}_q with genus greater than 4, has class number greater than 1.

The following theorem was the first attempt to give a complete classification:

Theorem 1 (Leitzel, Madan, Queen – 1975) *Let* K *be an algebraic function field in one variable over* \mathbb{F}_q *with genus g such that* 0 < g < 4 *and class number 1. Then* K *is isomorphic to the algebraic function field* $\mathbb{F}_q(x, y)$ *in one variable defined by one of the following equations:*

1

In what follows, an algebraic function field in one variable over \mathbb{F}_2 with genus 4 and class number 1 is constructed and this leads to a complete classification of the algebraic function fields in one variable over \mathbb{F}_q with class number one.

Definition 1 An algebraic curve defined over \mathbb{F}_q is called a n-pointless curve if it has no \mathbb{F}_{q^m} rational points for each $m \leq n$. Similarly, an algebraic function field in one variable over \mathbb{F}_q corresponding to a *n*-pointless curve is called a *n*-pointless function field.

Every genus 0 algebraic curve defined over \mathbb{F}_q has \mathbb{F}_q -rational points (this follows from the Riemann hypothesis for function fields, proved by Weil in 1948). Also, in 1936, Hasse proved that each genus 1 algebraic curve defined over \mathbb{F}_q has \mathbb{F}_q -rational points.

In 2013 (cf [8]) Stirpe proved that, for any positive integer *n*, there exists an algebraic function field in one variable over \mathbb{F}_q without places of degree smaller than *n* with genus smaller than Cq^n , where C > 0 is a suitable constant depending only on the prime *p*. This construction,

with n = 3, gives us the algebraic function field $\mathbb{F}_2(x, y)$ in one variable defined by the following equation:

$$y^{5} + y^{3} + y^{2}(x^{3} + x^{2} + x) +$$

+ $y \frac{x^{7} + x^{5} + x^{4} + x^{3} + x}{x^{4} + x + 1} +$
+ $\frac{x^{13} + x^{12} + x^{8} + x^{6} + x^{2} + x + 1}{(x^{4} + x + 1)^{2}} = 0.$

This algebraic function field over \mathbb{F}_2 is 3-pointless, has genus 4 and class number 1. From now on, we denote it by *L*.

Theorem 2 (Mercuri, Stirpe – 2015) Let *K* be an algebraic function field in one variable over \mathbb{F}_2 with genus 4 and class number 1. Then *K* is isomorphic to *L*.

Using this result, the classification is given in the following way:

Theorem 3 (Leitzel, Madan, Queen; Mercuri, Stirpe et al.) Let K be an algebraic function field in one variable over \mathbb{F}_q with positive genus and class number 1. Then K is isomorphic to the algebraic function field $\mathbb{F}_q(x, y)$ in one variable defined by one of the following equations:

(vii) $y^2 + y - x^3 + \alpha = 0$, with q = 4, $\alpha \in \mathbb{F}_4^{\times}$ and g = 1, where α is a generator of the multiplicative group \mathbb{F}_4^{\times} ;

(viii)
$$y^5 + y^3 + y^2(x^3 + x^2 + x) + y(x^7 + x^5 + x^4 + x^3 + x)(x^4 + x + 1)^{-1} + (x^{13} + x^{12} + x^8 + x^6 + x^2 + x + 1)(x^4 + x + 1)^{-2} = 0$$
, with $q = 2$ and $g = 4$.

At the same time, independently, Shen and Shi and also Rzedowski-Calderòn and Villa-Salvador proved the same result. The proof of Shen and Shi is a correction of the original argument of Leitzel, Madan and Queen, while Rzedowski-Calderòn and Villa-Salvador showed that there exists only one (up to isomorphism) function field with genus 4 and class number 1, without using the example found by Stirpe.

References

- H. HASSE, Zur Theorie der abstrakten elliptischen Funktionkörper I, II, III, J. Reine Angew. Math., 175 (1936), 55-62, 69-88, 193-208.
- [2] J. LEITZEL, M. MADAN, C. QUEEN, *Algebraic function fields of class number one*, Journal of Number Theory, **7** (1975), 11-27.
- [3] M. MADAN, C. QUEEN, Algebraic function fields of class number one, Acta Arithmetica, 20 (1972), 423-432.
- [4] R. E. Mac Rae. On unique factorization in certain rings of algebraic functions, Journal of Algebra, 17 (1971).
- [5] P. MERCURI, C. STIRPE, *Classification of function fields with class number one*, Journal of Number Theory, **154** (2015), 365-374.
- [6] M. RZEDOWSKI-CALDERÒN, G. VILLA-SALVADOR, Congruence Function Fields with Class Number One, Arxiv (2014).
- [7] Q. SHEN, J. SHI, Function Fields of class number one, Arxiv (2015).

- [8] C. STIRPE, An upper bound for the minimum genus of a curve without points of small degree, Acta Arithmetica, **160** (2013), 115-128.
- [9] C. STIRPE, A counterexample to 'Algebraic function fields with small class number', Journal of Number Theory, **143** (2014), 402-404.

Floriana Amicone, Alessandro Boni, Andrea Di Lorenzo Dipartimento di Matematica Sapienza Università di Roma Piazzale Aldo Moro 5 00185 Roma, Italy