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1 Introduction

An ordinary Pell’s equation is an equation of the form

x2 − ny2 = 1, (1)

where n is a positive integer that is not a square. It is well known that
a pair of integers (x, y) is a solution for (1) if and only if x + y

√
n is

a unit with norm 1 of the ring Z[
√

n]. It is also known that the integer
solutions of (1) form an abelian group V isomorphic to Z/2Z × Z.
Moreover, V ∩R>0 � Z is cyclic and a generator of this group is called
a fundamental solution of (1).

A polynomial Pell’s equation is an equation of the form

P2 − DQ2 = 1, (2)

where D ∈ Z[X] is not a square. We are interested in solutions P,Q ∈
Z[X]. Now, we define what a parametric solution of a Pell’s equation
is. Let the pair (a, b) be a fundamental solution of the ordinary Pell’s
equation (1). A pair (P,Q), with P,Q ∈ Z[X], is a parametric solution
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associated to (a, b) if there is a polynomial D ∈ Z[X] that is not a
square and deg(D) = 2 such that (P,Q) is a solution of (2) and there is
an integer k such that




P(k) = a,
Q(k) = b,
D(k) = n.

The degree of a parametric solution (P,Q) associated to (a, b) is
deg(P). Without loss of generality we can assume that k = 0. With this
assumption, if the polynomials P,Q, D ∈ Z[X] form a parametric solu-
tion, then P(mX ),Q(mX ), D(mX ) form a parametric solution for every
nonzero integer m. From now on, we also assume that deg(D) = 2.

The solutions of a Pell’s equation are strictly related to Chebyshev
polynomials. Let V be the C(X )-vector space of sequences {un}n∈N,
with un ∈ C(X ) such that

un+1 = 2Xun − un−1.

We know thatV has dimension 2 and a basis is {Tn,Un}, whereTn,Un ∈

Z[X] are the Chebyshev polynomials of first and second kind of degree
n respectively. They are defined by{

T0(X ) = 1
T1(X ) = X,

and
{

U0(X ) = 1
U1(X ) = 2X .

Explicitly they can be expressed as

Tn(X ) =
1
2

[(
X −

√
X2 − 1

)n
+

(
X +

√
X2 − 1

)n]
,

Un(X ) =
1

2
√

X2 − 1

[(
X −

√
X2 − 1

)n+1
−

(
X +

√
X2 − 1

)n+1]
,

and, in the field C(X )
[√

X2 − 1
]
, they satisfy the identity(

X +
√

X2 − 1
)n
= Tn(X ) +Un−1(X )

√
X2 − 1.
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Hence (Tn,Un−1) is a solution of the Pell’s equationwith D(X ) = X2−1,
i.e.

T2
n (X ) − (X2 − 1)U2

n−1(X ) = 1.

Theorem 1. Let P,Q, D ∈ C[X] with deg(D) = 2 and deg(P) = d.
The following conditions are equivalent:

1. P,Q, D satisfy the identity P2 − DQ2 = 1;

2. there are λ, µ ∈ C∗ and ν ∈ C such that




P(X ) = ±Td (λX + ν)
Q(X ) = µUd−1(λX + ν)
D(X ) = (λX+ν)2−1

µ2 .

Remark 2. If d is odd, then Td is an odd function and we can remove
the sign ±.

2 Parametric solutions

Now, we study the possible degrees of a parametric solution. We start
giving an explicit description in the cases deg(P) = 1, 2.

Proposition 3. Let (a, b) be a solution of the Pell’s equation (1) and
let P,Q, D ∈ Z[X] with deg(D) = 2 and deg(P) = 1. Let

c =



1 if b is odd
2 if b is even.

The following conditions are equivalent:

1. P,Q, D satisfy



P2 − DQ2 = 1
P(0) = a
Q(0) = b
D(0) = n;
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2. there is a nonzero integer m such that




P(X ) = b2m
c X + a

Q(X ) = b
D(X ) = b2m2

c2 X2 + 2am
c X + n.

Proposition 4. Let (a, b) be a solution of the Pell’s equation (1) and
let P,Q, D ∈ Z[X] with deg(D) = 2 and deg(P) = 2. The following
conditions are equivalent:

1. P,Q, D satisfy



P2 − DQ2 = 1
P(0) = a
Q(0) = b
D(0) = n;

2. there are two integers m , 0 and ε ∈ {±1} such that, if

c = gcd(b3, (a + ε)b, 2(a + ε)2),

then we have



P(X ) = b4 (a+ε)m
c X2 + 2b2 (a+ε)m

c X + a
Q(X ) = b3m

c X + b
D(X ) = b2 (a+ε)2m2

c2 X2 + 2(a+ε)2m
c X + n.

Let n be a positive integer that is not a square and let K = Q(
√

n)
a quadratic real number field. Let OK the ring of integers of K and let
U the subgroup of O×K consisting of the units with norm 1. We have
that U is isomorphic to Z/2Z × Z. We also know that the elements of
the subgroup V = U ∩Z[

√
n] correspond bijectively to the solutions of

Pell’s equation (1). We denote by V (a, b) the subgroup of V generated
by −1 and a+b

√
n. If (a, b) is a fundamental solution of Pell’s equation

(1) we have that V (a, b) = V . The quotientU/V is a finite cyclic group.
The following theorem states that the degree of a parametric solution
is bounded.
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Theorem 5. Let n be a positive integer that is not a square and let
(a, b) a solution of Pell’s equation (1). The following conditions are
equivalent:

1. there is a parametric solution P,Q, D ∈ Z[X] of degree d asso-
ciated to (a, b);

2. we have that d | 2[U : V (a, b)].

Without other assumptions on n this bound is not uniform, in fact for
any positive integer d there are a, b ∈ Z such that(

2 +
√

3
)d
= a + b

√
3.

Now, taking n = 3b2 we have that (a, 1) is a fundamental solution of
x2 − ny2 = 1 and d | [U : V (a, 1)]. Hence, by Theorem 5 above, there
is a parametric solution of degree d.
If we restrict to n squarefree, we have that if n ≡ 2, 3 (mod 4) then

U/V is trivial, else U/V is a subgroup of Z/3Z. Hence, d must divide
6. More precisely, if n ≡ 2, 3 (mod 4) then d = 1, 2, else d = 1, 2, 3, 6.
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