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Prefazione

Il presente volume raccoglie gli interventi presentati nel corso del
Primo Simposio dell’Associazione Romana di Teoria dei Numeri. Il
convegno, tenutosi nella giornata del 7 Maggio 2015 presso l’Università
Europea di Roma, ha rappresentato la prima iniziativa dell’associazione.
Come organizzatori del simposio, e promotori della costituenda associ-
azione, ringraziamo gli oratori, per l’alto contributo scientifico o�erto,
ed agli Scriba che hanno redatto queste note. Ringraziamo anche
L’Università Europea di Roma e l’Università Roma Tre per aver fi-
nanziato l’evento.

L’associazione Romana di Teoria dei Numeri

L’idea di fondare questa un’associazione nasce dal desiderio di riu-
nire i ricercatori Romani che condividono l’interesse per la Teoria dei
Numeri.

Questo primo convegno, di cui sono qui raccolti gli atti, e’ una testi-
monianza del nostro obiettivo di non limitarci ad un programma scien-
tifico specifico ma di fungere un ruolo per la creazione opportunitÃ� e
servizi per lo sviluppo della Teoria dei Numeri. Tra queste opportunità
e servizi rientra il progetto scriba ma anche l’organizzazione di eventi
in paesi in via sviluppo e il sostegno ai giovani Teorici dei Numeri sia
Europei che da tutto il resto del mondo con una particolare attenzione
per quelli dai paesi in via di sviluppo.
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L’associazione, che nasce romana e che ha Roma come base, non ha
nessuna vocazione campanilista, o nazionale in senso stretto ma aspira
ad una visibilità internazionale.

La partecipazione al convegno di numerosi giovani ricercatori, ital-
iani e stranieri

Nell’intento di rendere piu’ operativa l’Associazione Romana di Teo-
ria dei Numeri e di realizzare, anche da un punto di vista concreto, i
suoi molteplici scopi, abbiamo scelto di trasformarla in una ONLUS.

Il nostro statuto sara’ disponibile quanto prima sul sito internet
dell’associazione (www.rnta.eu) e manifesta chiaramente che i nostri
sforzi ed i nostri fondi, saranno consacrati allo sviluppo dello studio
della Teoria dei Numeri tramite l’organizzazione diretta di eventi (un
convegno annuale a Roma oltre a seminari e conferenze distribuiti nel
corso dell’anno), la partecipazione, scientifica e come supporto eco-
nomico, degli associati ad eventi organizzati in Italia e all’estero sul
tema di interesse, ed infine la creazione di un fondo che permetta a
giovani teorici dei numeri Italiani ed a matematici provenienti da paesi
in via di sviluppo di partecipare alla vita scientifica internazionale nel
settore di studio.

1 Il progetto Scriba

Gli atti di un convegno raccolgono di norma i contributi piú significa-
tivi presentati durante il convegno stesso. La scelta editoriale operata
in questo caso è stata leggermente diversa. Nelle settimane che hanno
preceduto il nostro simposio, abbiamo analizzato la lista dei parteci-
panti ed individuato una rosa di Dottorandi e giovani Post-Doc Italiani
e stranieri cui abbiamo proposto di svolgere un compito particolare:
quello dello "scriba". Ciascuno degli studiosi cosí individuati è stato
poi associato ad uno degli oratori del convegno di cui doveva seguire
l’intervento con particolare attenzione e a cui doveva poi rivolgersi per
raccogliere tutte le informazioni complementari (note bibliografiche,
approfondimenti eccetera) che gli permettessero di essere l’autore di
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un articolo dedicato a quella particolare conferenza.
I motivi di questa scelta rimandano a quello che è uno dei temi di

predilezione dell’Associazione Romana di Teoria dei Numeri: l’apertura
ai piú giovani e la loro sensibilizzazione ai nostri temi di ricerca. Questo
lavoro ha infatti consentito ai nostri ”scriba“ di confrontarsi con il dif-
ficile compito di scrivere su un argomento distinto da quello della loro
tesi di Dottorato o dei loro primi articoli (spesso ad essa strettamente
legati) esplorando un nuovo tema di ricerca scelto fra i filoni attualmente
piú promettenti; il beneficio diretto, in termini di ampliamento degli
orizzonti ed approfondimento della cultura scientifica, ha persuaso tutti
i partecipanti da noi sollecitati ad accettare entusiasticamente. Inoltre,
la possibilità di lavorare a stretto contatto con ricercatori di maggiore
esperienza ha certamente rappresentato per i nostri ”scriba“ un ulteri-
ore fattore di crescita personale. I testi sono ovviamente stati sottoposti
ai relatori per approvazione e poi ripresi dai curatori del volume.

M����� M�������
D����������� �� E�������
U��������� E������ �� R���
email: marina.monsurro@unier.it

F�������� P���������
D����������� �� M��������� � F�����
U��������� R��� T��
email: pappa@mat.uniroma3.it

V������ T��������
D����������� �� M��������� � F�����
U��������� R��� T��
email: valerio@mat.uniroma3.it
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Foreword

This volume contains the proceeding of the first miny symposium
of the Roman Number Theory Association. The conference, was held
on May 7, 2015 at the Università Europea di Roma, and it represented
the first initiative of the association. As organizers of the symposium,
and promoters of the constituent association, we thank the speakers for
the high scientific contribution o�ered, and the "scribas" who wrote
these notes. We also thank the Università Europea di Roma and the
Università Roma Tre for funding the event.

The Roman Number Theory Association

The idea of founding this association stems from the desire to bring
together Roman researchers who share an interest in number theory.

This first conference, whose proceedings are collected here, is evi-
dence of our goal: to be a key player in the development of a strong
Roman community of number theorists, and by this we do not only
intend to foster a specific scientific program but also, and more impor-
tantly, to create a framework of opportunities for scientific cooperation
for those interested in number theory. Among these opportunities we
can enlist the Scriba project as well as international cooperation with
developing countries and the support of young researcher in number
theory with special regards to those coming from developing country.
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The association, even tough founded and based in Rome has an
international spirit and we strongly believe in international cooperation.

In an e�ort to make the Roman Number Theory Association work
e�ciently and achieve its multiple goals we chose to turn it into an
NGO.

Our statute will be available as soon as possible on the association’s
website (www.rnta.eu) and it clearly shows that our e�orts and our funds
will be devoted entirely to the development of Number Theory. This
will be achieved in several ways: by directly organising events - an
annual symposium in Rome as well as seminars distributed over the
year; participation, by participating and supporting, both scientifically
and financially, workshops, schools and conferences on the topics of
interest; by creating a fund to subsidize the participation of young Italian
number theorists and mathematicians from developing countries to the
activities of the international scientific community.

The Scriba project

The proceedings of a conference usually collect the most significant
contributions presented during the conference itself. The editorial
choice made in this case was slightly di�erent. In the weeks leading
up to our first symposium, we pondered upon the list of participants
and identified a list of PhD students and young researchers to whom we
proposed to carry out a particular task: that one of the "scriba". Each of
the chosen young scholar was then paired with one of the speakers and
was asked to prepare a written report on the talk of the speakers he was
assigned to. Of course in doing so the scribas had to get in contact with
speakers after the conference in order to get the needed bibliographical
references as well as some insight on the topic in question. It has to be
said that all the speakers and scriba joined the project enthusiastically.

The reasons for this choice lies in the most essential aim of our
Association: introducing young researcher to number theory, in all its
possible facets. The benefits of this project were twofold: on one side
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the "scribas" had to undertake the challenging task of writing about a
topics di�erent from their thesis or their first article subject and learn
about a new possible topic of research and, on the other side they had
the possibility to collaborated with a senior researcher and learn some
trick of the trade.

The manuscripts were approved by the speakers and lastly reviewed
by the editors of the present volume.

M����� M�������
D����������� �� E�������
U��������� E������ �� R���
email: marina.monsurro@unier.it

F�������� P���������
D����������� �� M��������� � F�����
U��������� R��� T��
email: pappa@mat.uniroma3.it

V������ T��������
D����������� �� M��������� � F�����
U��������� R��� T��
email: valerio@mat.uniroma3.it
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15. Valerio Talamanca (Università Roma Tre)
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18. Biagio Palumbo (Università Roma Tre)
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23. Andrea Di Lorenzo (Sapienza Università di Roma)
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Pietro Mercuri

New results on the Class Number
One problem for Functions Fields

written by Floriana Amicone, Alessandro Boni
and Andrea Di Lorenzo

Let p be a prime number and let q be a power of p. This talk was
devoted to the classification of algebraic function fields in one variable
over the finite field Fq with class number one. An immediate conse-
quence of the Riemann-Roch theorem is that every algebraic function
field in one variable over Fq with genus 0 has class number 1. In 1971
Mac Rae classified algebraic function fields in one variable over Fq
with positive genus and class number 1 having rational places. In 1972
Madan and Queen gave a full list of zeta functions of the algebraic
function fields in one variable over Fq with positive genus and class
number 1. They also proved that an algebraic function field in one
variable over Fq with genus greater than 4, has class number greater
than 1.

The following theorem was the first attempt to give a complete clas-
sification:

Theorem 1 (Leitzel, Madan, Queen – 1975) Let K be an algebraic
function field in one variable over Fq with genus g such that 0 < g < 4
and class number 1. Then K is isomorphic to the algebraic function
field Fq (x, y) in one variable defined by one of the following equations:
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(i) y2 + y + x

3 + x + 1 = 0, with q = 2 and g = 1;

(ii) y2 + y + x

5 + x

3 + 1 = 0, with q = g = 2;

(iii) y2 + y + (x

3 + x

2 + 1)(x

3 + x + 1)�1 = 0, with q = g = 2;

(iv) y4 + xy3 + (x

2 + x)y2 + (x

3 + 1)y + x

4 + x + 1 = 0, with q = 2
and g = 3;

(v) y4 + (x

3 + x + 1)y + x

4 + x + 1 = 0, with q = 2 and g = 3;

(vi) y2 + 2x

3 + x + 1 = 0, with q = 3 and g = 1;

(vii) y2 + y � x

3 + ↵ = 0, with q = 4, ↵ 2 F⇥4 and g = 1, where ↵ is a
generator of the multiplicative group F⇥4 .

In what follows, an algebraic function field in one variable over F2
with genus 4 and class number 1 is constructed and this leads to a
complete classification of the algebraic function fields in one variable
over Fq with class number one.

Definition 1 An algebraic curve defined over Fq is called a n-pointless
curve if it has no Fqm rational points for each m  n. Similarly, an
algebraic function field in one variable over Fq corresponding to a
n-pointless curve is called a n-pointless function field.

Every genus 0 algebraic curve defined over Fq has Fq-rational points
(this follows from the Riemann hypothesis for function fields, proved by
Weil in 1948). Also, in 1936, Hasse proved that each genus 1 algebraic
curve defined over Fq has Fq-rational points.

In 2013 (cf [8]) Stirpe proved that, for any positive integer n, there
exists an algebraic function field in one variable over Fq without places
of degree smaller than n with genus smaller than Cq

n, where C > 0 is
a suitable constant depending only on the prime p. This construction,
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with n = 3, gives us the algebraic function field F2(x, y) in one variable
defined by the following equation:

y5 + y3 + y2(x

3 + x

2 + x)+

+ y
x

7 + x

5 + x

4 + x

3 + x

x

4 + x + 1
+

+
x

13 + x

12 + x

8 + x

6 + x

2 + x + 1
(x

4 + x + 1)2 = 0.

This algebraic function field over F2 is 3-pointless, has genus 4 and
class number 1. From now on, we denote it by L.

Theorem 2 (Mercuri, Stirpe – 2015) Let K be an algebraic function
field in one variable over F2 with genus 4 and class number 1. Then K

is isomorphic to L.

Using this result, the classification is given in the following way:

Theorem 3 (Leitzel, Madan, Queen; Mercuri, Stirpe et al.) Let K be
an algebraic function field in one variable over Fq with positive genus
and class number 1. Then K is isomorphic to the algebraic function
field Fq (x, y) in one variable defined by one of the following equations:

(i) y2 + y + x

3 + x + 1 = 0, with q = 2 and g = 1;

(ii) y2 + y + x

5 + x

3 + 1 = 0, with q = g = 2;

(iii) y2 + y + (x

3 + x

2 + 1)(x

3 + x + 1)�1 = 0, with q = g = 2;

(iv) y4 + xy3 + (x

2 + x)y2 + (x

3 + 1)y + x

4 + x + 1 = 0, with q = 2
and g = 3;

(v) y4 + (x

3 + x + 1)y + x

4 + x + 1 = 0, with q = 2 and g = 3;

(vi) y2 + 2x

3 + x + 1 = 0, with q = 3 and g = 1;
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(vii) y2 + y � x

3 + ↵ = 0, with q = 4, ↵ 2 F⇥4 and g = 1, where ↵ is a
generator of the multiplicative group F⇥4 ;

(viii) y5 + y3 + y2(x

3 + x

2 + x) + y(x

7 + x

5 + x

4 + x

3 + x)(x

4 + x +

1)�1 + (x

13 + x

12 + x

8 + x

6 + x

2 + x + 1)(x

4 + x + 1)�2 = 0, with
q = 2 and g = 4.

At the same time, independently, Shen and Shi and also Rzedowski-
Calderòn and Villa-Salvador proved the same result. The proof of
Shen and Shi is a correction of the original argument of Leitzel, Madan
and Queen, while Rzedowski-Calderòn and Villa-Salvador showed that
there exists only one (up to isomorphism) function field with genus 4
and class number 1, without using the example found by Stirpe.
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Peter Stevenhagen

Adelic points of elliptic curves

written by Athanasios Angelakis

1 Introduction

In the first part of his thesis [1], Angelakis studies absolute abelian
Galois groups AK = Gal(Kab/K ) of number fields K using class field
theory. It was already known that for imaginary quadratic number
fields K, K 0 we can have AK � AK0, as topological groups, even if K
and K 0 are not isomorphic as number fields (Onabe, 1976). Angelakis’
striking and very explicit result is the following;

Theorem 1.1 There exist “many” imaginary quadratic number fields
K having

AK � U def
= DZ2 ⇥

1Y

m=1
Z/mZ,

as topological groups.

In order to make more precise what “many” means, data can be taken
from Watkins’ table. For example, the imaginary quadratic number
fields K having prime class number lower than 100. From these 2356
number fields, 2291 have absolute abelian Galois group AK isomorphic
to U. Numerically, it seems that an imaginary quadratic number field K
of class number p has AK � U with probability 1� 1

p . This observation
leads to:

7



Conjecture 1.2 100% of all imaginary quadratic number fields K of
prime class number have AK � U .

Not much can be proven here, as distribution results both for the
occurrence of prime class numbers and for the average splitting behavior
in the analysis of AK , are lacking. However the same techniques can
be applied to a di�erent problem that, although at first sight more
complicated, does yield proven theorems.

2 Elliptic curves over K

In class field theory, Galois groups arise as quotients of the multiplica-
tive group A⇤K of K-ideles. Here the interest lies in the adelic point
group E(AK ) of an elliptic curve E defined over a number field K . The
distribution of E(K ) as finitely generated abelian group is a very hard
problem, even over Q.

Even though AK =
Q0
p Kp is a restricted product of all completions

Kp of K , the adelic point group of an elliptic curve E/K equals

E(AK ) =
Y

p

E(Kp).

For “large” p there are many di�erent possibilities for the p-adic group
E(Kp). Still, the product is surprisingly rigid:

Theorem 2.1 Let K be a number field of degree n. Then for ‘almost
all’ elliptic curves E/K , the adelic point group E(AK ) is topologically
isomorphic to the universal group

En = (R/Z)n ⇥DZn ⇥ 1Y

m=1
Z/mZ

associated to the degree n of K .
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Based on the counting of integral Weierstrass models as in [4], the
notion of ‘almost all’ in this theorem is the following one: for elements
a and b in the ring of integers OK of K satisfying �(a, b) = �16(4a3 +

27b2) , 0, we write E(a, b) for the elliptic curve defined by the a�ne
Weierstrass equation y2 = x3 + ax + b. Now fix a norm | |.| | on
R ⌦Z O2

K � R
2[K :Q]. Then for any positive real number X , the set

BX of elliptic curves E(a, b) with | |(a, b) | | < X is finite. We say that
almost all elliptic curves over K have some property, if the fraction
of elliptic curves E(a, b) in BX having that property tends to 1 when
X 2 R>0 tends to infinity.

Our notion of ‘almost all’ still allows for large numbers of elliptic
curves E/K to have adelic point groups di�erent from the universal
group in Theorem 2.1, as the following theorem states.

Theorem 2.2 Let K be a number field of degree n. Then there exist
infinitely many elliptic curves E/K that are pairwise non-isomorphic
over an algebraic closure of K , and for which E(AK ) is a topological
group not isomorphic to En.

The adele ring of K naturally decomposes as a product AK = A1K ⇥
Afin

K , in which A1K is the product of the archimedean completions of K ,
and the ring of finite K-adeles Afin

K =
Q0
p Kp is the restricted product

(in the sense explained above) of the non-archimedean completions
of K . The adelic point group of an elliptic curve E/K decomposes
correspondingly as a product

E(AK ) = E(A1K ) ⇥ E(Afin
K ). (1)

The best strategy is to deal with these factors separately.

3 The Structure of E(AK )

Every completion of K at an infinite primep of K is isomorphic to either
R or C, depending on whether p is real or complex. For p complex

9



and E/K an elliptic curve, E(Kp) is a topological group isomorphic to
(R/Z)2, by the well-known fact that we have E(Kp) � C/⇤ for some
lattice ⇤ ⇢ C by the complex analytic theory.

For p real and E/K an elliptic curve, there are two possible types
of groups E(Kp), and they may be distinguished by looking at the
discriminant �E of the elliptic curve. The sign of �(E) is well-defined
for every real prime p : K ! R of K , and for such p we have

E(Kp) �
8><>:
R/Z, if �(E) <p 0;
R/Z ⇥ Z/2Z, if �(E) >p 0.

(2)

The following is easily proved

Proposition 3.1 Let K be a number field of degree n, and E/K an
elliptic curve with discriminant �E 2 K⇤/(K⇤)12. Then there exists an
isomorphism of topological groups

E(A1K ) � (Z/2Z)r ⇥ (R/Z)n. (3)

Here r  n is the number of real primes p of K for which we have
�(E) >p 0.

Let p |p be a finite prime of a number field K , and E an elliptic
curve defined over K . In explicit terms, E can be given by a minimal
Weierstrass equation with coe�cients in Op. In this way a continuous
reduction map �p : E(Kp) �! E(kp), from E(Kp) to the finite set of
points of the curve E described by the reduced Weierstrass equation
over the residue class field kp = O/p, is obtained. The set of points
in the non-singular locus Ens(kp) of E is contained in the image of
�, by Hensel’s lemma, and it inherits a natural group structure from
E(Kp). Writing E0(Kp) = ��1[Ens(kp)], yields the exact sequence of
topological groups

1! E1(Kp) �! E0(Kp) �! Ens(kp) ! 1. (4)

The kernel of reduction E1(Kp) is a subgroup of finite index in E(Kp).

10



For primes of good reduction, we have E0(Kp) = E(Kp), and
Ens(kp) = E(kp) is the point group of the elliptic curve E = (E mod p)
over kp. For primes of bad reduction, E0(Kp) is a strict subgroup of
E(Kp), but it is of finite index in E(Kp) by [3, Chapter VII, Corollary
6.2.]

Lemma 3.2 Let Tp be the torsion subgroup of E(Kp). Then Tp is a
finite group, and E(Kp)/Tp is a free Zp-module of rank [Kp : Qp].

If p is a prime of good reduction for E, then there exist an isomor-
phism

Tnon-p
p � E(kp)non-p

between the maximal subgroups of Tp and E(kp) that are of order
coprime to p = char(kp).

Taking the product over all non-archimedean primes p of K , and
using the fact that the sum of the local degrees at the primes over p in
K equals [K : Q], one gets the following.

Lemma 3.3 For the group of adelic points of an elliptic curve E over
a number field K , there is an isomorphism of topological groups

E(DK ) = DZ[K :Q] ⇥
Y

p

Tp, (5)

with Tp ⇢ E(Kp) the finite torsion subgroup of E(Kp).

In order to describe any countable product T of cyclic groups, one
can write each of the cyclic constituents of T as a product of cyclic
groups of prime power order to arrive at the standard representation

T �
Y

` prime

1Y

k=1
(Z/`kZ)e(`,k) . (6)

The exponents e(`, k) can intrinsically be defined in terms of T as

e(`, k) = dimF` T[`k]/
⇣
T[`k�1] + `T[`k+1]

⌘
, (7)
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so any two groups written in this standard representation (6) are iso-
morphic if and only if their exponents e(`, k) coincide for all prime
powers `k .

The F`-dimensions e(`, k) in (7) are either finite, in which case
e(`, k) is a non-negative integer, or countably infinite. In the latter case
write e(`, k) = !. In the case where e(`, k) = ! for all prime powers
`k , the group under consideration is

TE =

1Y

m=1
Z/mZ (8)

occurring in Theorem 2.1.
For the product T =

Q
p Tp of local torsion groups at the finite

primes p that occurs in Lemma 3.3, the exponents e(`, k), for the
number of cyclic summands of prime power order in the standard
representation (6) of TE , have to be determined.

In the analogous situation of the closure TK of the torsion subgroup ofDO⇤ in [2, Section 2.3] that one had e(`, k) = ! for all but finitely many
prime powers `k , and the ‘missing’ prime powers were characterized in
terms of the number of exceptional roots of unity in K . In the elliptic
situation, the cyclotomic extension of K generated by the `k-th roots of
unity will be replaced by the `k-division field

ZE (`k ) def
= K (E[`k](K )) (9)

of the elliptic curve E. This is the finite Galois extension of K obtained
by adjoining the coordinates of all `k-torsion points of E to K . More
precisely, the following holds:

Lemma 3.4 Let E/K be an elliptic curve, and `k > 1 a prime power
for which the inclusion

ZE (`k ) ⇢ ZE (`k+1)

of division fields is strict. Then e(`, k) = ! in the standard representa-
tion (6) of the group T .

12



It follows from Lemmas 3.3 and 3.4 that for elliptic curves E having
the property that for all primes `, the tower of `-power division fields
has strict inclusions

ZE (`) ( ZE (`2) ( ZE (`3) ( · · · ( ZE (`k ) ( · · · (10)

at every level, the group TE is the universal group
Q1

m=1 Z/mZ for
which e(`, k) = ! in the standard representation (6).

The structure of E(AK ) is determined by the Galois representation

⇢E : Gal(K/K ) �! A = Aut(E(K )tor)

describing the action of the absolute Galois group of K by group
automorphisms on the group E(K )tor of all torsion points of E. The
group A can be explicitly describe as

A = Aut(E(K )tor) � lim n
GL2(Z/nZ) = GL2(DZ),

and ⇢E is a continuous homomorphism of profinite groups. The image
of Galois for the representation ⇢E is the subgroup

G = ⇢E [Gal(K/K )] ⇢ A.

For K= Q, Angelakis in [1, Section 4.4] uses a result of Nathan Jones
to show that ‘almost always’ one has E(AQ) = E.

For K , Q using that GL2(DZ)
det�! DZ⇤ and denoting by HK the Galois

group Gal(K (⇣1)/K ) (see the figure below), it follows that the image
G ⇢ det�1[HK]; this time, one can use the result of Zywina [4] to
get that ‘almost always’ the image G = det�1[HK], which implies that
for every prime power `k > 1 the inclusion ZE (`k ) ⇢ ZE (`k+1) is
strict. From Lemma 3.4 one gets that e(`, k) = ! for T in the standard
representation (6). So putting (1), (3), (5) and (8) together, the group
E(AK ) of adelic points of ‘almost all’ elliptic curves E/K , with n the
degree of K , is isomorphic to the “generic group”

E = (R/Z)n ⇥ (DZ)n ⇥
1Y

m=1
Z/mZ. (11)
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K (⇣1)

HK

Q(⇣1)

DZ⇤

K

Q(⇣1) \ K

Q
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Automorphisms of non-split

Cartan modular curves

written by Mohammed Anwar

Modular curves are algebraic curves whose points (more precisely
all but finitely many of them) parametrize families of elliptic curves.
Classically modular curves are constructed as (compactifications of)
quotients of the upper half plane under the action of subgroups of
SL2(Z). The general set up is as follows:

• h = {⌧2C : Im(⌧) > 0}

• H a subgroup of GL2(Z/NZ)

• �H = {�2 SL2(Z) | �mod N belongs to H }

Then � acts on h by fractional linear transformations:

� =

 
a b
c d

!
2 SL2(Z) �(⌧) =

a⌧ + b
c⌧ + d

and the action can be extended to h [ Q [ {1}. The space of orbits
h [ Q [ {1}/�H can be given the structure of Riemann surface and is
denoted by XH and is called the modular curve associated to H . The
point of XH coming from Q [ {1} are called the cusps (or cuspidal
points) of XH .

17



To connect the above definition to elliptic curves recall that to every
⌧2h is associated a complex torus E⌧ , (thus an elliptic curve over C),
defined by E⌧ = C/(Z + ⌧Z). Moreover any two such complex tori
E⌧ and E⌧0 are isomorphic if and only if are in the same orbit under
SL2(Z). This gives the modular interpretation of X�, (here � = SL2(Z))
as parametrizing isomorphism classes of elliptic curves. For general
�H one has to consider the following set up:

• E is an elliptic curve over C, and E[N] denotes the subgroup of
N-torsion points.

• ' : E[N]! Z/NZ ⇥ Z/NZ is an isomorphism.

• Two pair (E, ') and (E 0, '0) are equivalent if and only if there
exist an isomorphism f : E ! E 0, such that M � ' = '0 � f , for
some M2H .

Then, the non cuspidal points of XH parametrize equivalence class of
pairs (E, '). A crucial fact is that the compact Rieman surfaces XH

can be given a structure of projective algebraic curve defined over the
cyclotomic field Q(⇣N ). Moreover if det : H ! Z/N Z⇤ is surjective
than XH is actually defined over Q.

One interesting problem is to study the group of automorphisms
of XH . Recall that SL2(R)/{±Id} is the automorphisms group of h,
acting upon h by fractional linear transformations. If N (�H ) denotes
the the normaliser of �H in SL2(R), then an element ⌘ of N (�H )
define an automorphism of h/�H and it can be shown that ⌘ extends to
an automorphism of XH . Set B(XH ) = N (�H )/�H ⇢ Aut(XH ), the
elements of B(XH ) are called modular automorphisms. A non-modular
automorphism is called exceptional

Question 1 When the genus of XH is at least 2 is every automorphism
of XH modular?

Beside being an interesting question on its own the above question
is also related to Serre’s Uniformity conjecture as follows: In [7] J.P.
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Serre proved the following result (here and in the sequel CM stands for
complex multiplication)

Theorem 2 Let E be an elliptic curve over Q. If E is without CM then
there exist a constant CE such that for every prime number p > CE the
Galois representation modulo p attached to E is surjective.

Serre asked whether the constant CE could be made independent of E:

Question 3 (Serre’s uniformity problem) Does there exist a number
C0 such that for every elliptic curve without CM and every p > C0 the
Galois representations modulo p attached to E is surjective?

It widely believed that one can take C0 = 37, (see, e.g. [1]). Since
the maximal subgroup of GL2(Z/pZ) are:

• Exceptional subgroups, i.e. those whose image in PGL2(Z/pZ)
is isomorphic to A4, S4, or A5.

• Borel subgroups.

• Normalizers of split Cartan subgroups.

• Normalizers of non-split Cartan subgroups.

Thus, to solve Serre’s uniformity problem, one has to prove that
for su�ciently large p the image of the Galois representation is not
contained in any of the above subgroups. Serre settled the exceptional
subgroups, while the case of Borel subgroups follows from work of
Mazur [6] on rational isogenies of prime degree. Much more recently
Bilu and Parent solved Serre’s problem in the split Cartan case. Thus
the only remaining case is the non-split Cartan.

The connection to points on modular goes as follows: Let H be
a (maximal) subgroup of GL2(Z/pZ), then a rational point on XH is
associated to a pair (E, '), where

• E is an elliptic curve defined over Q;
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• Gal(Q/Q) acts on the p-torsion to as subgroup of H;

• the image of the Galois representation modulo p attached to E is
contained in H .

We refer the interested reader to [5] for details.
Thus elliptic curves without CM, for which the associate Galois repre-
sentation modulo p is not surjective correspond to (non CM) rational
points on the modular curve XH (for some maximal subgroup H of
GL2(Z/pZ)), which are not cusps. Such a rational point could be
constructed as the mage of a cuspidal point via an exceptional automor-
phism of XH .

Let C be a non-split Cartan subgroup of GL2(Z/pZ) and C+ its nor-
malizer. The associated modular curves are denoted by Xns (p) and
X+ns (p) respectively. C has index 2 in C+ and there exists a degree two
morphism Xns (p) ! X+ns (p) and a modular involution w of X+ns (p),
such that X+ns (p) = Xns (p)/hwi. Moreover B (Xns (p)) = hwi and
B
�
X+ns (p)

�
is trivial. It is expected that for large p all the automor-

phism of Xns (p) are modular. The following are some recent result on
regarding the automorphism group of Xns (p)

Theorem 4 ([2]) The automorphism group of Xns (11) is isomorphic
to Z/2Z ⇥ Z/2Z .

Theorem 5 ([3])

1) For p � 37 all the automorphisms of Xns (p) preserve the cusps.

2) If p ⌘ 1 mod 12 and p , 13, then

Aut(Xns (p)) = hwi = B (Xns (p))

Theorem 6 ([4]) If 13  p  31, then

1) Aut(X+ns (p)) is trivial.

2) Aut(Xns (p)) = hwi
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Automata and Number Theory

written by Valerio Dose

Many natural questions in number theory arise from the study of
the multiplicative representations of integers, and they are often at the
origin of many important open problems in Mathematics and Com-
puter Science. Among these questions, a simpler family consists of
those which can be formulated by means of functions defined using an
algorithm which is “simple” enough, in a way that will be made clear
below.

The study of a finite number of subsets of the natural numbers N,
can be related to the study of sequences of symbols in a finite set. For
example, we can associate to even and odd numbers the set of symbols
{0, 1} and the infinite sequence 010101 . . . . Also, we can associate to
any subset E ✓ N and to any integer q � 2, the language

Lq (E) = {repq (n), n 2 E}

where repq (n) is the representation of n in base q, which makes Lq (E)
a set of words on the alphabet {0, 1, . . . , q � 1}. This relation allows to
express many questions about arithmetic sequences in the framework
of the theory of formal languages, thus establishing a link between
number theory, language theory and combinatorics on words.

In virtue of this connection, it is interesting to consider automatic
sequences of integers, which are those recognizable by finite automata
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(an introduction to finite automata can be found in the book of Allouche
and Shallit [1]).

For example, the graph associated to the finite 2-automaton that
recognizes even numbers represented in base 2 and read from the left
to the right can be represented by the diagram:

s0 s1

1
0

0

1

where s0 is the initial and unique final state. A more elaborated example
if given by the graph associated to the finite q-automaton that recognizes
numbers in the sequence {qn, n 2 N}, written in base q:

s0 s1 s2
1

0

2, . . . , q � 1

1, . . . , q � 1
0 0, . . . , q � 1

where s0 is the initial state and s1 is the unique final state.
A fundamental result that relates Number Theory to Finite Automata

was proven if 1980:

Theorem 1 (Christol, Kamae, Mendès France and Rauzy, [2])

Let E ✓ N and Fq a finite field. The formal power series

X

n2E
X�n 2 Fq

f f
X�1

g g

is algebraic over Fq (X ) if and only if E is recognizable by a finite

q-automaton.
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To understand how simple automatic sequences are, we define, for
any sequence w = {wn}n2N on a finite alphabet A, the function pw :
N! N by

pw (n) = #{(b1, . . . , bn), 9k s.t. wk = b1, . . . ,wk+n+1 = bn}

(i.e. pw (n) is the number of distinct factors of lenght n in the sequence
w).

The connection between automaton and the function pw was estab-
lished in 1972:

Theorem 2 (Cobham [3]) Ifw is recognizable by a finite q-automaton,

then pw (n) = O(n).

From a number theoretic point of view, it is a natural question to
ask whether is it possible to recognize prime numbers with a finite
automaton. The answer to this question is negative, as shown by
Minsky and Papert (1966), in a result then generalized by Hartmanis,
Shank and Schützenberger (1968), by Mauduit (1992) and by Cassaigne
and Le Gonidec (2006).

Other natural questions regard the existence of prime numbers in a
given automatic sequence. For examples the sequences {2n + 1}n2N
and {2n � 1}n2N are both recognizable by a finite 2-automaton, and the
problems associated correspond respectively to the search of Fermat
and Mersenne primes.

In the case when E is a set recognized by a finite automaton whose
associated graph is strongly connected, it follows from a remark by
Fouvry and Mauduit (1996) that E contains infinitely many almost
primes (see [4]). On the other hand it is still an open problem to find an
asymptotic estimate for the number of primes less than a certain bound
x in the set E.

For general automatic sets the situation is more complicated. One of
the first problems to be considered in this direction concerns the search
of primes with missing digits. Though some results on integers with
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missing digits were obtained by Erd�s, Mauduit and Sárközy (1998),
the problem of finding an asymptotic estimate of the quantity

#{p  x, p prime, repq (p) 2 D⇤}

where D⇤ is the set of words on any given subset D ⇢ {0, . . . , q � 1}, is
still open.

Other famous automatic sequences are the Thue-Morse sequences
and the Rudin-Shapiro sequences. For these two examples it can be
proved the following results appeared respectively in 2010 and 2015
(see also [5]):

Theorem 3 (Mauduit and Rivat [6]) Let

(tn)n2N = 01101001100101101001011001101001 . . .

be the Thue-Morse sequence and let P be the set of prime numbers. The

frequences of 0 and 1 in the sequence (tp)p2P is

1
2

.

Theorem 4 (Mauduit and Rivat [7]) Let

(rn)n2N = 000100100001110100010010 . . .

be the Rudin-Shapiro sequence and let P be the set of prime numbers.

The frequences of 0 and 1 in the sequence (rp)p2P is

1
2

.
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The distribution of class groups of

imaginary quadratic fields

written by Giulio Meleleo

The study of class groups and of class numbers has been a central task
in number theory since their introduction, around 1845, by Kummer.
The interest for the class group of imaginary quadratic fields goes
actually back to Gauss, who in [2, art. 303-304], already predicted
that there exists only finitely many imaginary quadratic number fields
having a given class number and asked for a complete list of such
number fields for each given value. Evidently Gauss formulated his
result and conjecture in terms of quadratic forms. in 1934 Heilbron [3]
established Gauss claim, by proving that the class number of imaginary
quadratic number tends to infinity as the discriminant grows, and thus
proving that every finite abelian group can appear as the class group of
an imaginary quadratic field only finitely many times. It is then only
natural to ask the following:

Question 1 Let G be a finite abelian group. How many times does G
occur as the class group of some imaginary quadratic field?

Set

F (G) := #{imaginary quadratic fields K : cl(OK ) ' G}.
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The following table is made out of a (much larger) set of data obtained
by computations carried out with the aid of a supercomputer and under
the GRH (cf. [4]):

p 3 5 7 11 13 17 19 23
F
⇣
Z
pZ

⌘
33 93 130 241 335 518 599 823

F
⇣
Z
pZ ⇥ Z

pZ

⌘
1 2 2 0 5 1 0 1

Looking at the table it is natural to ask if F
⇣
Z
pZ ⇥ Z

pZ

⌘
> 0 for

infinitely many primes p. Evidently one can ask similar questions for
groups of order pn, for any n � 2. To formulate a precise question we
need a little bit of notation. Let p be an odd prime. As it is well know
isomorphism classes of abelian groups of order pn are in one-to-one
correspondence with the set of all possible partitions of n. Namely

{[G] : G abelian group, |G | = pn} $ Part(n)
kM

i=1
Z/pniZ 7! (n1, . . . , nk )

where

Part(n) =
8><>:(n1, . . . , nk ) 2 Nk :

kX

i=1
n1=n, n1�n2� · · · �nk

9>=>; .
If � := (n1, . . . , nk ) 2 Part(n), we denote with G�(pn) the correspond-
ing abelian group. Thus we can formulate the following

Question 2 Is F (G�(pn)) > 0 for infinitely many primes p?

Given � = (n1, . . . , nk ) 2 Part(n) let

cyc(�) := n1 �
kX

i=2
(2i � 3)ni .
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Note that 1 � (n � 1)2  cyc(�)  n and is equal to n if and only if
G�(pn) is cyclic.

Conjecture 3 (Holmin, Kurlberg, Jones, McLeman, Petersen) Fix n 2
N and � 2 Part(n). As x ! 1, one has

X

px
F (G�(pn)) =

8><>:
15C

n(cyc(�)+1) · x
cyc(�)+1

(log x)2 (1 + o(1)) cyc(�) � 0
O(1) cyc(�) < 0.

where C is defined by the Euler product

C :=
1Y

`=3
` prime

1Y

i=2

 
1 � 1
`i

!
⇡ 0.754 . . .

It is interesting to see explicitly what the conjecture says for n = 2, 3.

n = 2
Consider the partition � = (1, 1), for which cyc(1, 1) = 0, we have the
following set of data

p 3 5 7 11 13 17 19 23
F

⇣
Z
pZ ⇥ Z

pZ

⌘
1 2 2 0 5 1 0 1

The conjecture asserts that as x ! 1,
X

px
F

 
Z

pZ
⇥ Z

pZ

!
⇠ 15C

2
x

(log x)2

In particular is expected that F
⇣
Z
pZ ⇥ Z

pZ

⌘
> 0 for an infinite set of

primes (of asymptotic density zero)

n = 3
Consider the two partitions (1, 2) (cyc(2, 1) = 1) and (1, 1, 1) (cyc(1, 1, 1) =
�3) , in this case the data collected in [4]) gives:
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p 3 5 7 11 13 17 19
F

✓
Z
p2Z
⇥ Z

pZ

◆
5 11 13 19 17 25 22

F
⇣
Z
pZ ⇥ Z

pZ ⇥ Z
pZ

⌘
0 0 0 0 0 0 0

The conjecture asserts that as x ! 1,

X

px
F

 
Z

p2Z
⇥ Z

pZ

!
⇠ 15C

8
x2

(log x)2

whereas X

px
F

 
Z

pZ
⇥ Z

pZ
⇥ Z

pZ

!
⇠ O(1)

The heuristic behind the conjecture is based on the Cohen-Lenstra
heuristic for class groups (cf. [1]). Given G, set

P(G) :=
1/|Aut(G) |

P
|H |= |G | 1/|Aut(H) | ,

Then Cohen-Lenstra heuristic predicts that the probability of G being
the class group of an imaginary quadratic field is exactly P(G).

Let

F (h) := #{imaginary quadratic fields K : |cl (OK ) | = h}.
So that F (h) =

P
|G |=h F (G), where the sum runs over the isomor-

phism classes of abelian groups of order h. By the Cohen-Lenstra
heuristic one expects to have

F (G�(pn)) ⇡ P(G�(pn)) · F (pn).

In 1907, Ranum proved that for � 2 Part(n), one has P(G�(pn)) ⇠
pcyc(�)�n for p that tends to infinity (see [5]). Moreover, a recent
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conjecture of Soundararajan [6] says that for h ! 1 through odd
values, F (h) ⇣ h

logh . Hence, we can deduce that

F (G�(pn)) ⇡ pcyc(�)�n · pn

log(pn)
=

pcyc(�)

n log p
.

Finally, we can see that
X

px
F (G�(pn)) ⇡

X

px

pcyc(�)

n log p
⇠ 1

n(cyc(�) + 1)
· xcyc(�)+1

(log x)2 .

This is, up to a the multiplicative constant 15C the content of Conjecture
3. The presence of 15C can be explained via the following refinement
of Soundararajan’s conjecture:

Conjecture 4 (Holmin, Kurlberg, Jones, McLeman, Petersen) For h !
1 through odd values,

F (h) ⇠ 15 · C · c(h) · h
log h

where

c(h) =
1Y

pn | |h

nY

i=1

 
1 � 1

pi

!�1

Another important theorem of Soundararajan [6] says that for H !
1, one has

1
H

X

hH
F (h) ⇠ 3⇣ (2)

⇣ (3)
H .

A result related to this one is the following:

Theorem 5 (Holmin, Kurlberg, Jones, McLeman, Petersen) Assume
the Generalize Riemann Hypothesis. Then

1
H/2

X

hH
h odd

F (h) ⇠ ⇡
2⇣ (2)
⇣ (4)

· H
log H

for H ! 1.
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Lastly one can ask if a “typical” G�(pn) satisfies F (G�(pn)) > 0
infinitely often. An answer to this question is the following result.

Theorem 6 (Holmin, Kurlberg, Jones, McLeman, Petersen)

#{� 2 Part(n) : cyc(�) � 0}
# Part(n)

⌧ n5/4e(2�⇡p2/3)
p
n.

In particular, almost all partitions � 2 Part(n) conjecturally satisfy
F (G�(pn)) = 0 for p � 1.

The proof of this theorem is combinatorial, via generating functions.
For all the results highlighted in this extended abstract we refer the

reader to [4].
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Let a, b 2 N�2 be multiplicatively independent in Q⇤. The quantity
gcd(an�1, bn�1), n 2 N, has been investigated by several authors. An
important result was obtained by Bugeaud, Corvaja and Zannier [3],
who proved that for any ✏ > 0,

gcd(an � 1, bn � 1)  exp(✏n) ,

as n tends to infinity.
The function field analogue, given f , g 2 C[X], corresponds to find-

ing upper bounds for deg gcd( f n � 1, gn � 1). The following definition
is central for the next results.

Definition 1 The polynomials F1, . . . , Fs 2 C[X1, . . . , X`] are multi-

plicatively independent if there exists no nonzero vector (⌫1, . . . , ⌫s) in

Zs such that

F⌫1
1 · · · F

⌫s
s = 1.

Similarly, the polynomials F1, . . . , Fs 2 C[X1, . . . , X`] are multiplica-

tively independent in the group C(X1, . . . , X` )⇤/C⇤ if there exists no

nonzero vector (⌫1, . . . , ⌫s) 2 Zs and a 2 C⇤ such that

F⌫1
1 · · · F

⌫s
s = a.
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Ailon and Rudnick [1] showed that for multiplicatively independent
polynomials f , g 2 C[X], there exists h 2 C[X] such that

gcd( f n � 1, gn � 1) | h (1)

for all n � 1. If in addition gcd( f � 1, g � 1) = 1, then there is a finite
union of arithmetic progressions [diN, di � 2, such that, for n outside
these progressions, gcd( f n � 1, gn � 1) = 1.

Corvaja and Zannier [4] extended the result of Ailon and Rudnick [1]
to S-units: let S ⇢ C be a finite set and let u, v 2 C(X ) be multiplica-
tively independent rational functions with all their zeroes and poles in
S. Then

deg gcd(u � 1, v � 1) ⌧ max(deg u, deg v)2/3. (2)

As a corollary, if f , g 2 C[X] are multiplicatively independent, then
one gets deg gcd( f n � 1, gn � 1) ⌧ n2/3, which improves the trivial
bound⌧ n.

In [5] several extensions of the Ailon-Rudnick theorem over C are
developed in order to study:

1. gcd (h1( f n), h2(gm)), where h1, h2 2 C[X];
2. gcd

⇣
f n1
1 · · · f n`` � 1, gm1

1 · · · g
mr
r � 1

⌘
, where f1, . . . , f` and g1,

. . . , gr belong to C[X];
3. gcd (h1(Fn), h2(Gm)), where h1, h2 2 C[X] and both F and G

belong to C[X1, . . . , Xm];
4. the set of common zeros of Fn1

1 � 1, . . . , Fn`+1
`+1 � 1 over C, which

is denote by Z
⇣
Fn1

1 � 1, . . . , Fn`+1
`+1 � 1

⌘
, where

F1, . . . , F`+1 2 C[X1, . . . , X`].

The goal is to obtain uniform bounds for the degree of these gcd’s in
the sense that they do not depend on the powers n,m, . . . .

Using a uniform bound for the number of points on a curve with
coordinates roots of unity due to Beukers and Smyth [2], one obtains
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an upper bound on deg gcd( f n�1, gm�1) that depends only the degrees
of f and g:

Lemma 1 Let f , g 2 C[X] be non constant polynomials. If f and g
are multiplicatively independent, then

deg gcd
�

f n � 1, gm � 1
� 
⇣
11(d f + dg)2

⌘min(d f ,dg )
.

for all n,m � 1.

This result can be generalized to:

Theorem 2 Let f , g, h1, h2 2 C[X]. If f and g are multiplicatively

independent in C(X )⇤/C⇤, then

deg gcd
�
h1
�

f n
�
, h2
�
gm
��  dh1 dh2

⇣
11(d f + dg)2

⌘min(d f ,dg )
.

for all n,m � 1.

Another extension of the Ailon-Rudnick theorem obtained in [5] is
the following:

Theorem 3 Let f1, . . . , f`, g1, . . . , gr 2 C[X], `, r � 1, be multi-

plicatively independent polynomials. Then, for all n1, . . . , n`,m1, . . . ,
mr � 1, there exists a polynomial h 2 C[X] such that

gcd
⇣

f n1
1 · · · f n`` � 1, gm1

1 · · · g
mr
r � 1

⌘
| h.

If in addition

gcd( f1 · · · f` � 1, g1 · · · gr � 1) = 1,

then there exists a finite number of monoids Ls in N`+r
such that

N`+r\ [s Ls is infinite and for any vector (n1, . . . , n`,m1, . . . ,mr ) 2
N`+r\ [s Ls,

gcd
⇣

f n1
1 · · · f n`` � 1, gm1

1 · · · g
mr
r � 1

⌘
= 1.
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Theorem 3 can also be reformulated in terms of S-units in C[X] and
gives a uniform bound for deg gcd(u� 1, v � 1). Such a uniform bound
is not present in (2) which, on the other hand, applies to more general
situations.

It might be possible to unify Theorems 2 and 3 to obtain a similar
result for

gcd
⇣
h1
⇣

f n1
1 · · · f n``

⌘
, h2
⇣
gm1

1 · · · g
mr
r

⌘⌘
,

where h1, h2 2 C[X]. Similar ideas may work for this case however
they require a uniform bound for the number of points on intersections
of curves in the torus G`+r

m with algebraic subgroups of dimension
k  ` + r � 2, which is not available. This will also give a bound for
deg h in Theorem 3.

In the multivariate case, applying Hilbert’s Irreducibility Theorem
to reduce via specializations to the univariate case, we get:

Theorem 4 Let h1, h2 2 C[X] and F,G 2 C[X1, . . . , X`]. We denote

by

D = max
i=1...,`

⇣
degXi

F, degXi
G
⌘
.

If F,G are multiplicatively independent in C(X1, . . . , X` )⇤/C⇤, then for

all n,m � 1 we have

deg gcd
�
h1
�
Fn� , h2

�
Gm��  dh1 dh2

⇣
44(D + 1)2`

⌘ (D+1)`
.

Lastly, for an integer D � 1, if we denote �` (D) =
⇣
`+1+D`

`+1

⌘
, then

we have the following result:

Theorem 5 Let F1, . . . , F`+1 2 C[X1, . . . , X`] be multiplicatively inde-

pendent polynomials of degree at most D. Then,

[

n1,...,n`+12N
Z
⇣
Fn1

1 � 1, . . . , Fn`+1
`+1 � 1

⌘

is contained in at most

N  (0.792�` (D)/ log (�` (D) + 1))�` (D)
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algebraic varieties, each defined by at most `+1 polynomials of degree

at most

(` + 1)D`
Y

p�` (D)

p

(the product runs over all primes p  �` (D)).
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1 Introduction

An ordinary Pell’s equation is an equation of the form

x

2 � ny2 = 1, (1)

where n is a positive integer that is not a square. It is well known that
a pair of integers (x, y) is a solution for (1) if and only if x + y

p
n is

a unit with norm 1 of the ring Z[
p

n]. It is also known that the integer
solutions of (1) form an abelian group V isomorphic to Z/2Z ⇥ Z.
Moreover, V \R>0 � Z is cyclic and a generator of this group is called
a fundamental solution of (1).

A polynomial Pell’s equation is an equation of the form

P

2 � DQ

2 = 1, (2)

where D 2 Z[X] is not a square. We are interested in solutions P,Q 2
Z[X]. Now, we define what a parametric solution of a Pell’s equation
is. Let the pair (a, b) be a fundamental solution of the ordinary Pell’s
equation (1). A pair (P,Q), with P,Q 2 Z[X], is a parametric solution
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associated to (a, b) if there is a polynomial D 2 Z[X] that is not a
square and deg(D) = 2 such that (P,Q) is a solution of (2) and there is
an integer k such that 8>><>>:

P(k) = a,
Q(k) = b,
D(k) = n.

The degree of a parametric solution (P,Q) associated to (a, b) is
deg(P). Without loss of generality we can assume that k = 0. With this
assumption, if the polynomials P,Q, D 2 Z[X] form a parametric solu-
tion, then P(mX ),Q(mX ), D(mX ) form a parametric solution for every
nonzero integer m. From now on, we also assume that deg(D) = 2.

The solutions of a Pell’s equation are strictly related to Chebyshev
polynomials. Let V be the C(X )-vector space of sequences {un}n2N,
with un 2 C(X ) such that

un+1 = 2Xun � un�1.

We know that V has dimension 2 and a basis is {Tn,Un}, where Tn,Un 2
Z[X] are the Chebyshev polynomials of first and second kind of degree

n respectively. They are defined by
(

T0(X ) = 1
T1(X ) = X,

and
(

U0(X ) = 1
U1(X ) = 2X .

Explicitly they can be expressed as

Tn(X ) =
1
2

✓
X �
p

X

2 � 1
◆n
+
✓
X +
p

X

2 � 1
◆n�
,

Un(X ) =
1

2
p

X

2 � 1

"✓
X �
p

X

2 � 1
◆n+1
�
✓
X +
p

X

2 � 1
◆n+1#

,

and, in the field C(X )
fp

X

2 � 1
g
, they satisfy the identity

✓
X +
p

X

2 � 1
◆n
= Tn(X ) +Un�1(X )

p
X

2 � 1.
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Hence (Tn,Un�1) is a solution of the Pell’s equation with D(X ) = X

2�1,
i.e.

T

2
n (X ) � (X

2 � 1)U2
n�1(X ) = 1.

Theorem 1. Let P,Q, D 2 C[X] with deg(D) = 2 and deg(P) = d.

The following conditions are equivalent:

1. P,Q, D satisfy the identity P

2 � DQ

2 = 1;

2. there are �, µ 2 C⇤ and ⌫ 2 C such that

8>>><>>>:
P(X ) = ±Td (�X + ⌫)
Q(X ) = µUd�1(�X + ⌫)
D(X ) = (�X+⌫)2�1

µ2 .

Remark 2. If d is odd, then Td is an odd function and we can remove
the sign ±.

2 Parametric solutions

Now, we study the possible degrees of a parametric solution. We start
giving an explicit description in the cases deg(P) = 1, 2.

Proposition 3. Let (a, b) be a solution of the Pell’s equation (1) and

let P,Q, D 2 Z[X] with deg(D) = 2 and deg(P) = 1. Let

c =
8><>:

1 if b is odd

2 if b is even.

The following conditions are equivalent:

1. P,Q, D satisfy 8>>>>><>>>>>:

P

2 � DQ

2 = 1
P(0) = a

Q(0) = b

D(0) = n;
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2. there is a nonzero integer m such that

8>>><>>>:
P(X ) = b2m

c X + a

Q(X ) = b

D(X ) = b2m2

c2 X

2 + 2am
c X + n.

Proposition 4. Let (a, b) be a solution of the Pell’s equation (1) and

let P,Q, D 2 Z[X] with deg(D) = 2 and deg(P) = 2. The following

conditions are equivalent:

1. P,Q, D satisfy 8>>>>><>>>>>:

P

2 � DQ

2 = 1
P(0) = a

Q(0) = b

D(0) = n;

2. there are two integers m , 0 and " 2 {±1} such that, if

c = gcd(b

3, (a + ")b, 2(a + ")2),

then we have

8>>>><>>>>:

P(X ) = b4 (a+")m
c X

2 + 2b2 (a+")m
c X + a

Q(X ) = b3m
c X + b

D(X ) = b2 (a+")2m2

c2 X

2 + 2(a+")2m
c X + n.

Let n be a positive integer that is not a square and let K = Q(
p

n)
a quadratic real number field. Let OK the ring of integers of K and let
U the subgroup of O⇥K consisting of the units with norm 1. We have
that U is isomorphic to Z/2Z ⇥ Z. We also know that the elements of
the subgroup V = U \Z[

p
n] correspond bijectively to the solutions of

Pell’s equation (1). We denote by V (a, b) the subgroup of V generated
by �1 and a+b

p
n. If (a, b) is a fundamental solution of Pell’s equation

(1) we have that V (a, b) = V . The quotient U/V is a finite cyclic group.
The following theorem states that the degree of a parametric solution
is bounded.
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Theorem 5. Let n be a positive integer that is not a square and let

(a, b) a solution of Pell’s equation (1). The following conditions are

equivalent:

1. there is a parametric solution P,Q, D 2 Z[X] of degree d asso-

ciated to (a, b);

2. we have that d | 2[U : V (a, b)].

Without other assumptions on n this bound is not uniform, in fact for
any positive integer d there are a, b 2 Z such that

⇣
2 +
p

3
⌘d
= a + b

p
3.

Now, taking n = 3b

2 we have that (a, 1) is a fundamental solution of
x

2 � ny2 = 1 and d | [U : V (a, 1)]. Hence, by Theorem 5 above, there
is a parametric solution of degree d.

If we restrict to n squarefree, we have that if n ⌘ 2, 3 (mod 4) then
U/V is trivial, else U/V is a subgroup of Z/3Z. Hence, d must divide
6. More precisely, if n ⌘ 2, 3 (mod 4) then d = 1, 2, else d = 1, 2, 3, 6.
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1 Introduction

This is a report of the results obtained in joint work Pieter Moree (Bonn)
and Ioulia Baoulina (Moscow), starting by providing background. For
the details see [1].

For natural numbers m, k > 1 we consider the power sum

Sk (m) = 1k + 2k + · · · + (m � 1)k .

For k = 1, 2, 3, Sk (m) equals, respectively,

m(m � 1)
2

,
(m � 1)m(2m � 1)

6
,

m

2(m � 1)2

4
.

In the 17th century J. Faulhaber (1580-1635) realized that the power
sums can be, in essence, expressed as polynomials in S1(m). Namely,
there exists polynomials Fk and Gk such that

Sk (m) =
8><>:

Fk (S1(m)) with deg(Fk ) = (k + 1)/2 if k is odd;
S2(m)Gk (S1(m)) with deg(Gk ) = (k � 2)/2 if k is even.
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The following theorem expresses the power sum Sk (m) in terms of
Bernoulli numbers Bk , which are defined by the identity

t

e

t � 1
=

1X

k=0
Bk

t

k

k!
.

Theorem 1 (Faulhaber) For all positive integers m and k, we have

Sk (m) =
1

k + 1

kX

j=0

 
k + 1

j

!
Bjm

k+1�j .

E. Kummer in 1850 gave the following definition of an irregular
prime.

Definition 2 Write Bk =
uk
vk

with (uk, vk ) = 1. An odd prime p is
called irregular if p | uk for some k 2 {2, 4, . . . , p � 3}, and the pair
(k, p) is called an irregular pair. An odd prime is called regular if it
is not irregular.

In 1851, Kummer obtained the following congruence, which plays an
important role in the development of the theory of p-adic zeta functions.

Theorem 3 (Kummer) If ` ⌘ k . 0 (mod p � 1), then

B`

`
⌘ Bk

k

(mod p).

Furthermore, he proved Fermat’s Last Theorem for regular prime ex-
ponents.

Theorem 4 (Kummer) If p is regular, then x

p + yp = z

p has only
trivial solutions.

In his work on Fermat’s Last Theorem, Kummer also showed that p is
regular when the class number hp = h(Q(⇣p)) of the pth cyclotomic
field is not divisible by p.
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Conjecture 5 (Kellner, 2011) [3] Let m and k be positive integers
with m > 3. Then the ratio

Sk (m + 1)
Sk (m)

is an integer if and only if (m, k) 2 {(3, 1), (3, 3)}.

Hence, since Sk (m + 1) = Sk (m) + m

k , we have

Sk (m + 1)
Sk (m)

2 Z i�
m

k

Sk (m)
2 Z.

Kellner’s conjecture is thus equivalent with the following one (in a
moment we will see what Erd�s and Moser have to do with it).

Conjecture 6 (Kellner–Erd�s–Moser) Let a, k,m be positive integers
with m > 3. Then

aSk (m) = m

k () (a, k,m) 2 {(1, 1, 3), (3, 3, 3)}.

In case m = 3 we have aSk (3) = 3k and it follows that a = 3e for
some e � 0. Then 1+ 2k = 3k�e, which has as only solutions 1+ 2 = 3
and 1 + 23 = 32 (as was already known in the Middle Ages).

In case a = 1, we obtain the following special case of the Kellner-
Erd�s-Moser conjecture.

Conjecture 7 (Erd�s, 1950) The Diophantine equation

1k + 2k + · · · + (m � 1)k = m

k (1)

has only one solution, namely 1 + 2 = 3.

A few years after Erd�s made his conjecture L. Moser proved the
following theorem.

Theorem 8 (Moser, 1953) [7], cf. [4] If (m, k) is a solution of (1)
with k > 2, then m > 10106 .
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The lower bound for m can be sharpened to m > 109·106 , see P. Moree
[4]. In 2011, Y. Gallot, P. Moree and W. Zudilin [2] using completely
di�erent methods again sharpened the lower bound.

Theorem 9 [2] If (m, k) is a solution of (1) with k > 2, then m >
10109 .

For the general case aSk (m) = m

k , in 2015, I. Baoulina and P. Moree
[1] established the following results.

Theorem 10 If aSk (m) = m

k with m > 3, then

• a has no regular prime divisors;

• a = 1 or a > 1500;

• m has no regular prime divisors;

• k,m > 1082;

• k,m > 109·106 if m ⌘ 1 (mod 3);

• k,m > 104·1020 if m ⌘ 1 (mod 30).

Theorem 11 Suppose that (m, k) is a non-trivial solution of aSk (m) =
m

k and p is a prime dividing m. Then

• p is an irregular prime;

• p

2 | uk;

• k ⌘ r (mod p � 1) for some irregular pair (r, p).

In case a = 1 this result is due to P. Moree, H. te Riele and J. Urbanowicz
[6].

Corollary 12 If a has a regular prime divisor, then the equation

aSk (m) = m

k

has only trivial solutions.
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In 1915, K. L. Jensen proved the following theorem.

Theorem 13 There are infinitely many primes p ⌘ 5 (mod 6) that are
irregular.

Note that it is still not known whether there are infinitely many regular
primes. Let us define

⇡i (x) := #{p 6 x : p is irregular}.
In 1954, C. L. Siegel provided an heuristic argument to justify the
conjecture that

⇡i (x) ⇠
 
1 � 1p

e

!
⇡(x) ⇠ 0.39...

x

log x

.

We will make the following weaker conjecture.

Conjecture 14 There exists � 2 (0, 1) such that

⇡i (x) < (1 � �) x

log x

as x ! 1.

Let I be the set of integers composed solely of irregular primes. Sup-
pose that conjecture (14) holds true. The standard theory of the average
behaviour of arithmetical functions yields that I (x) ⌧ x(log x)�� . On
combining this estimate and Corollary 12 we then obtain the following
result.

Proposition 15 Under Conjecture 14 the set of integer ratios that are
of the form Sk (m + 1)/Sk (m) with m � 3 has zero natural density.

We now briefly consider how to deal with aSk (m) = m

k for a prescribed
a.

A pair (t, q)a with q a prime and 2 6 t 6 q�3 even is called helpful

if q - a and, for every c = 1, 2, . . . , q � 1, we have

aSt (c) . c

t (mod q).

If q is an irregular prime, we require in addition that (t, q) should not
be an irregular pair.

53



Lemma 16 [1] If (t, q)a is a helpful pair and (m, k) a solution of

aSk (m) = m

k

with k even, then k . t (mod q � 1).

Suppose that 1 < a 6 1500. Then the equation aSk (m) = m

k has
no non-trivial solutions except possibly when a is an irregular prime or
a = 37 ⇥ 37. We have ⇡(1500) = 239, ⇡i (1500) = 90 and 90

239 ⇡ 0.38.

Example 17 Consider 673Sk (m) = m

k; (408, 673), (502, 673) are the
irregular pairs.
Reduction modulo 5:

• 3Sk (m) ⌘ m

k (mod 5)

• k ⌘ 502 (mod 672) ⇢ k ⌘ 2 (mod 4)

• (2, 5)3 is helpful

Reduction modulo 17:

• 10Sk (m) ⌘ m

k (mod 17)

• k ⌘ 408 (mod 672) ⇢ k ⌘ 8 (mod 16)

• (8, 17)10 is helpful

So, the equation has no solutions.

2 Start of Moser’s proof of Theorem 8

Consider a prime p so that m

k takes a simple form modulo p. The most
obvious choice is to take p to be a prime divisor of m�1. On using that
the power sum as a function of k is periodic modulo p, the equation (1)
reduces to

Sk (m) ⌘ m � 1
p

(1k + 2k + · · · + (p � 1)k ) ⌘ m

k ⌘ 1 (mod p). (2)
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Proposition 18 [4] Let p | m � 1 be a prime. Modulo p we have

Sk (p) ⌘
8><>:
�1 if p � 1 divides k;
0 otherwise.

By the proposition we have Sk (p) ⌘ �1 (mod p), and hence by (2)
we must have

m � 1
p

+ 1 ⌘ 0 (mod p).

We conclude that m � 1 must be squarefree and hence that

Y

p |m�1

 
m � 1

p

+ 1
!
⌘ 0 (mod m � 1),

On expanding the product we obtain
Y

p |m�1

 
m � 1

p

+ 1
!
= 1 +

X

p |m�1

m � 1
p

+
X

p1,p2 |m�1
p1,p2

(m � 1)2

p1p2
+ · · · ,

where the sum involving the primes p1, p2 and the sums not indicated
involving three primes or more are divisible by m�1. Hence we obtain

X

p |m�1

m � 1
p

+ 1 ⌘ 0 (mod m � 1),

which on division by m � 1 gives
X

p |m�1

1
p

+
1

m � 1
2 Z>1. (3)

Writing the equation Sk (m) = m

k as Sk (m + 2) = 2m

k + (m + 1)k and
using the proposition, we get

X

p |m+1

1
p

+
2

m + 1
2 Z>1. (4)
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By similar ad hoc arguments one is led to the following two conclusions:
X

p |2m�1

1
p

+
2

2m � 1
2 Z>1; (5)

X

p |2m+1

1
p

+
4

2m + 1
2 Z>1. (6)

On adding the four equations (3), (4), (5) and (6), we obtain
X

p |M

1
p

+
1

m � 1
+

2
m + 1

+
2

2m � 1
+

4
2m + 1

> 3
1
6
,

where M = (m2�1)(4m

2�1)/12. Using the fact that
P

p6107
1
p < 3.16,

we find M >
Q

p6107 p. This gives m > 10106
.

Details of the proof can be found in P. Moree [4] and L. Moser [7].
The title of [4] refers to the four, in an ad hoc way derived, equations
(3), (4), (5) and (6) ("the four mathemagical rabbits") and the fact that
they can be actually obtained from one theorem ("the top hat").

For a survey of work on the Erd�s-Moser equation the reader can
consult [5].

3 Challenges

• Can one use that p

2 | uk (with p | a), rather than p | uk?

• Show that Conjecture 7 implies Conjecture 6.

• Write a program to deal with aSk (m) = m

k for a given a.

• Show that if Sk (m) = bm

k , then 120 | k.

• Study the equation aSk (m) = bm

k .
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Digital properties
of prime numbers

written by Claudio Stirpe

1 Introduction

This exposition deals with the digits of prime numbers and oulines
some recent results in a joint work of Joël Rivat and Christian Mauduit.

Some of the typical questions that mathematicians are likely to think
about include:

• “Are prime number random?”

• “What type of results to expect?”

This is an introduction to some ideas focusing on what kind of result
one may expect.

2 Prime Number Theorem and Möbius Random
Principle

Let p be a prime and consider the von Mangoldt function defined as

⇤(n) = log p
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for n = pk and zero otherwise.
The famous Prime Number Theorem due to Hadamard [1] and, in-

dependently, to de la Vallée Poussin [2] states that
X

nx
⇤(n) = x + o(x). (1)

Let f be a function defined over the natural numbers. We say that f
satisfies Prime Number Theorem (PNT) if

P
nx ⇤(n) f (n) admits an

asymptotic formula.
The special case when f (n) = exp(2⇡i↵n) is relevant for Vinogradov

3-primes Theorem [13]: Let

r (N ) =
X

k1+k2+k3=N

⇤(k1)⇤(k2)⇤(k3).

Then

r (N ) =
1
2

Y

p |N

 
1 � 1

(p � 1)2

! Y

p-N

 
1 + 1

(p � 1)3

!
N2 +O

 
N2

logA N

!

(2)
where A is a fixed positive real number. The proof of (2) is based on
the identity:

r (N ) =
Z 1

0
*
,

NX

n=1
⇤(n) exp(2⇡i↵n)+-

3

exp(�2⇡i↵N ) d↵.

Vinogradov’s result implies that every su�ciently large odd integer n
can be written as the sum of three primes. The result was extended by
Helfgott [8] to all n � 5.

An other natural question is “Has n an odd number of primes in its
factorization or not?”. This is the reason why Möbius function arises
as

µ(n) = (�1)k,

where k is the number of distinct primes dividing n for any squarefree
n and µ(n) = 0 otherwise.
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As above we say that f satisfies Möbius Random Principle (MRP) ifP
nx µ(n) f (n) is close to zero.
These concepts are strongly related with Sarnak’s conjecture [12]

which relies on determining types of prime densities and functions
produced by zero topological entropy dynamical system.

MRP is easy to prove for f = 1 as
P

nx µ(n) = o(x). The reader
may compare this result with (1) which states that f = 1 satisfies PNT,
but MRP is sometimes easier to show than PNT for general f .

3 Are prime number digits random?

Now we turn to prime numbers. Are the digits of prime numbers
random? This is a di�cult question so we formulate it into another way
using Gelfond’s results [7]. Let q � 2 be an integer and let ✏

j

(n) be
the j-th digit in the q-ary expansion of n and consider

S(n) =
X

j

✏
j

(n).

We recall a property of S(n) about arithmetic progressions {s+km | k 2
Z}.

Theorem 1 (Gelfond [7], 1968) Given an integer m � 2, prime to
q � 1, there exists �

m

> 0 such that for any integer m0 > 0 and for any
arithmetic progression A = {s+km | k 2 Z} and A0 = {s0+km0 | k 2 Z}

X

nx, (S(n),n)2(A,A0)

1 = x
m0m

+O(x1��m ).

Again compare this formula with (1). The sum of digits is well dis-
tributed in arithmetic progressions !

Gelfond underlines two important problems:

1. Evaluate the number of prime numbers p  x such that S(p) ⌘ a
mod m;
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2. Consider polynomial analogues: evaluate the number of integers
n  x such that S(P(n)) ⌘ a mod m, where P is a polynomial.

In the rest of this note, we will focus on the first question only.
In 2010, for f (n) = exp(2⇡i↵S(n)) and ↵ satisfing (q�1)↵ 2 R�Z,

a PNT properties was estabilished in [10]. Namely

������
X

nx
⇤(n) exp(2⇡i↵S(n))

������  C
q

(↵)x1��q (↵),

for suitable constants C
q

(↵) and �
q

(↵) depending on q and ↵.
Let (p

n

)
n�1 denote the sequence of prime numbers. By the previous

result, the sequence (↵S(p
n

))
n�1 is equidistributed modulo 1 for any

↵ 2 R � Z. Moreover for any integer a and m � 2, with m prime to
q � 1 we get X

px
S(p)⌘a mod m

1 ⇠ 1
m

X

px
1,

for large x.
In 2005 Dartyge-Tenenbaum [4] proved a similar result for MRP.
A more di�cult result [5] was obtained in 2009 about the number

of primes p satisfing S(p) = k. This number is close to the expected
value q�1

2 log
q

x as follows:

|{p  x | S(p) = k}| =

(q � 1)⇡(x)

'(q � 1)
q

2⇡�2
q

log
q

x
exp(
�(k � µ

q

log
q

x)2

2�2
q

log
q

x
) +O((log

q

x)�
1
2+✏ ),

where we denote by µ
q

and �
q

the numbers q�1
2 and q

2�1
12 , respectively.

and ✏ > 0 is an arbitrary, fixed real number. Such a local result was
previously considered “hopelessly di�cult” by Erdös!

One may also fix digits and their positions and wonder about asymp-
totic properties only. Recently, in 2014, Bourgain showed the existence

62



of an asymptotical formula for the existence of a small constant c > 0
such that for given integers k and ` with 1  `  ck we get

���{p < 2k, ✏
j1 (p) = b1, . . . , ✏ j` (p) = b` }��� ⇠ 1

2`
2k

log 2k
,

for large k, and for any choise of 1 < j1 < . . . < j` = k � 1 and
(b1, . . . , b` ) 2 {0, 1}` with b` = 1.

We can also consider more general functions f and try to establish
similar properties: similar results are given for strongly q-multiplicative
functions f (see [9]) and for block counting functions, as Rudin-Shapiro
sequence, see the following section.

4 Correlations in the Rudin–Shapiro sequence

We need new ideas for handling sequences like 111 . . . 111. Such
sequences arises in Mersenne primes 2n � 1. So in this section we
study correlations of digits.

Let � be a positive integer. We define

�� (n) =
X

k

✏
k���1(n)✏

k

(n).

This is the number of pairs of 1 in the representation of n with given
distance �+ 1. A recent result [11] states that for any real ↵ and ✓ there
exists explicit constants C(�) and �(↵) > 0 such that

������
X

nx
⇤(n) exp(�� (n)↵ + ✓n)

������  C(�)(log x)
11
4 x1��(↵)

and ������
X

nx
µ(n) exp(�� (n)↵ + ✓n)

������  C(�)(log x)
11
4 x1��(↵) .

A second generalization about blocks of d consecutive 1’s gives very
similar results.
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Remark 2 Our approach can be summarized in a few steps:

1. A first step is reducing the problem to an exponential sum.

2. Then we remove some digits, namely the upper range and the
lower range, using Van der Corput’s inequality, and this leads to
focus on the digits in the middle range only.

3. Separating the problem in two parts is also useful: a discrete
part and an analytical part.

4. For the first part we may use discrete Fourier transform. For the
second we use analytic methods to see which Fourier estimates
are needed. We may study the lowest terms of the string by
passing n modulo any integer l. We may also consider the first
digits by dividing with powers of q.

5. Finally, obtain the corresponding Fourier estimates.

5 Open problems

We finish this overview with three open problems.

1. What about the digits of p2?
This problem is completely open and not so easy to handle.

2. Consider the sequence (t
P(pn ) )n2N, where t

n

= (�1)S(n) is the
Thue-Morse sequence and P is a non constant polynomial with
P(n) 2 N for any n 2 N. Is it true that this sequence is normal?

3. What can we say from a dynamical system point of view?
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