

Non-Wieferich primes and Euclidean algorithm in number fields

Srinivas Kotyada and Subramani Muthukrishnan

An odd prime p is said to be a non-Wieferich prime with respect to the base a if

 $a^{p-1} \not\equiv 1 \pmod{p^2}.$ (1)

The following are some important results on non-Wieferich primes.

Theorem 1 (J.H. Silverman [1]) For any fixed $\alpha \in \mathbb{Q}^{\times}, \alpha \neq \pm 1$, and assuming the abc conjecture, card $\{p \leq x : \alpha^{p-1} \not\equiv 1 \pmod{p^2}\} \gg_{\alpha} \log x$ as $x \to \infty$.

Theorem 2 (*M. Ram Murty, H. Graves* [2]) For any $a \ge 2$ and any fixed $k \ge 2$, there are $\gg \log x/\log \log x$ primes $p \le x$ such that $a^{p-1} \not\equiv 1 \pmod{p^2}$ and $p \equiv 1 \pmod{k}$, under the assumption of abc conjecture.

Recently, the authors generalized the notion of non-Wieferich primes to algebraic number fields [3] and proved the following theorems.

Theorem 3 [3] Let $K = \mathbb{Q}(\sqrt{m})$ be a real quadratic field of class number one and assume that the abc conjecture holds true in K. Then there are infinitely many non-Wieferich primes in O_K with respect to the unit ε satisfying $|\varepsilon| > 1$.

Theorem 4 [3] Let K be any algebraic number field of class number one and assume that the abc conjecture holds true in K. Let η be a unit in O_K satisfying $|\eta| > 1$ and $|\eta^{(j)}| < 1$ for all $j \neq 1$, where $\eta^{(j)}$ is the jth conjugate of η . Then there exist infinitely many non-Wieferich primes in K with respect to the base η .

By computing non-Wieferich primes in number fields the authors proved that certain cyclic cubic fields of class number one are Euclidean (see [4] for details).

References

- J. H. Silverman Wieferich's criterion and the abc-conjecture, J. Number Theory. 30 (1988), no. 2, 226 – 237.
- [2] H. Graves, M. Ram Murty, *The abc conjecture and non-Wieferich primes in arithmetic progressions*, J. Number Theory 133 (2013), 1809–1813.
- [3] K. Srinivas, M. Subramani, Non-Wieferich primes in number fields and abc conjecture, Czechoslovak Mathematical Journal, 68, no. 2, 2018, 445-453.
- [4] K. Srinivas, M. Subramani, A note on Euclidean cyclic cubic fields. JRMS, 33, vol.2, 2018, 125-133.

Srinivas Kotyada

PROFESSOR, INSTITUTE OF MATHEMEMICAL SCIENCES

HBNI, CIT CAMPUS, TARAMANI

Chennai - 600 113, India.

email: srini@imsc.res.in

Subramani Muthukrishnan

HARISH CHANDRA RESEARCH INSTITUTE, HBNI

Chhatnag Road, Allahabad - 211 019, India.

email: msubramani@hri.res.in