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Editorial Committe

The homogeneous formΦn(X,Y ) of degree ϕ(n) which is associated
with the cyclotomic polynomial φn(t) is dubbed a cyclotomic binary
form. A positive integer m ≥ 1 is said to be representable by a cy-
clotomic binary form if there exist integers n, x, y with n ≥ 3 and
max{|x |, |y |} ≥ 2 such that Φn(x, y) = m. These definitions give rise
to a number of questions that we are going to address.
This is a joint work with Čtienne Fouvry and Claude Levesque

[FLW].

1 Cyclotomic polynomials

1.1 Definition

The sequence (φn(t))n≥1 can be defined by induction:

φ1(t) = t − 1, tn − 1 =
∏
d |n

φd(t).
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Hence,
φn(t) =

tn − 1∏
d,n
d |n

φd(t)
·

When p is prime, from

tp − 1 = (t − 1)(tp−1 + tp−2 + · · · + t + 1) = φ1(t)φp(t),

one deduces φp(t) = tp−1 + tp−2 + · · · + t + 1. For instance

φ2(t) = t + 1, φ3(t) = t2 + t + 1, φ5(t) = t4 + t3 + t2 + t + 1.

Further examples are

φ4(t) =
t4 − 1

φ1(t)φ2(t)
=

t4 − 1
t2 − 1

= t2 + 1 = φ2(t2),

φ6(t) =
t6 − 1

φ1(t)φ2(t)φ3(t)
=

t6 − 1
(t + 1)(t3 − 1)

=
t3 + 1
t + 1

= t2−t+1 = φ3(−t).

The degree of φn(t) is ϕ(n), where ϕ is the Euler totient function.

1.2 Cyclotomic polynomials and roots of unity

For n ≥ 1, if ζ is a primitive n–th root of unity, we have, in C[t],

φn(t) =
∏

gcd(j,n)=1
(t − ζ j).

For n ≥ 1, φn(t) is the irreducible polynomial over Q of the primitive
n–th roots of unity.
Let K be a field and let n be a positive integer. Assume that K has

characteristic either 0 or else a prime number p prime to n. Then the
polynomial φn(t) is separable over K and its roots in K are exactly the
primitive n–th roots of unity which belong to K .

102



1.3 Properties of φn(t)

• For n ≥ 2 we have

φn(t) = tϕ(n)φn(1/t)

• Let n = pe1
1 · · · p

er
r where p1, . . . , pr are different primes, e0 ≥ 0,

ei ≥ 1 for i = 1, . . . , r and r ≥ 1. Denote by R = p1 · · · pr the radical
of n. Then, φn(t) = φR(tn/R). For instance φ2e (t) = t2e−1

+ 1 for e ≥ 1.
• Let n = 2m with m odd ≥ 3. Then φn(t) = φm(−t).
φn(1)
For n ≥ 2, we have φn(1) = eΛ(n), where the von Mangoldt function
Λ is defined for n ≥ 1 as

Λ(n) =

{
log p if n = pr with p prime and r ≥ 1;
0 otherwise.

In other terms, for n ≥ 2, we have

φn(1) =

{
p if n = pr with p prime and r ≥ 1;
1 otherwise (ω(n) ≥ 1).

φn(−1)
For n ≥ 3,

φn(−1) =

{
1 if n is odd;
φn/2(1) if n is even.

In other terms, for n ≥ 3,

φn(−1) =

{
p if n = 2pr with p prime and r ≥ 1;
1 otherwise.

Hence, φn(−1) = 1 when n is odd or when n = 2m where m has at least
two distinct prime divisors.
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1.4 Lower bound for φn(t)

For n ≥ 3, the polynomial φn(t) is monic, has real coefficients and no
real root, hence, it takes only positive values (and its degree ϕ(n) is
even).

Lemma 1. For n ≥ 3 and t ∈ R, we have

φn(t) ≥ 2−ϕ(n).

Consequence: from φn(t) = tϕ(n)φn(1/t) we deduce, for n ≥ 3 and
t ∈ R,

φn(t) ≥ 2−ϕ(n)max{1, |t |}ϕ(n). (1.1)

Hence, φn(t) ≥ 2−ϕ(n) for n ≥ 3 and t ∈ R.

Proof of Lemma 1. Let ζn be a primitive n-th root of unity in C; then

φn(t) = NormQ(ζn)/Q(t − ζn) =
∏
σ

(t − σ(ζn)),

where σ runs over the embeddings Q(ζn) → C. We have

|t−σ(ζn)| ≥ |Im(σ(ζn))| > 0 and (2i)Im(σ(ζn)) = σ(ζn)−σ(ζn) = σ(ζn−ζn).

Now (2i)Im(ζn) = ζn − ζn ∈ Q(ζn) is an algebraic integer, hence,

2ϕ(n)φn(t) ≥ |NormQ(ζn)/Q((2i)Im(ζn))| ≥ 1.

�

2 The cyclotomic binary forms

2.1 Definition

For n ≥ 2, define

Φn(X,Y ) = Yϕ(n)φn(X/Y ).

This is a binary form in Z[X,Y ] of degree ϕ(n). From (1.1) we deduce
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Lemma 2 ([G]). For n ≥ 3 and (x, y) ∈ Z2,

Φn(x, y) ≥ 2−ϕ(n)max{|x |, |y |}ϕ(n).

Therefore, if Φn(x, y) = m, then

max{|x |, |y |} ≤ 2m1/ϕ(n). (2.1)

As a consequence, if max{|x |, |y |} ≥ 3, then n is bounded:

ϕ(n) ≤
log m

log(3/2)
·

2.2 Generalization to CM fields

The same proof yields:

Proposition 3 ([GL, G]). Let K be a CM field of degree d over Q. Let
α ∈ K be such that K = Q(α); let f be the irreducible polynomial of
α over Q and let F(X,Y ) = Y d f (X/Y ) the associated homogeneous
binary form:

f (t) = a0td+a1td−1+· · ·+ad, F(X,Y ) = a0Xd+a1Xd−1Y+· · ·+adY d .

For (x, y) ∈ Z2 we have

xd ≤ 2dad−1
d F(x, y) and yd ≤ 2dad−1

0 F(x, y).

The estimate of Proposition 3 is best possible: let n ≥ 3, not of the
form pa nor 2pa with p prime and a ≥ 1, so that φn(1) = φn(−1) = 1.
Then the binary form Fn(X,Y ) = Φn(X,Y − X) has degree d = ϕ(n)
and a0 = ad = 1. For x ∈ Z we have Fn(x, 2x) = Φn(x, x) = xd.
Hence, for y = 2x, we have

yd = 2dad−1
0 F(x, y).
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2.3 Improvement of Győry’s estimate for binary cyclotomic
forms [FLW]

We improve the upper bound (2.1) in order to have a non trivial result
also for max{|x |, |y |} = 2.

Theorem 4 ([FLW]). Let m be a positive integer and let n, x, y be
rational integers satisfying n ≥ 3, max{|x |, |y |} ≥ 2 and Φn(x, y) = m.
Then

max{|x |, |y |} ≤
2
√

3
m1/ϕ(n), hence, ϕ(n) ≤

2
log 3

log m.

These estimates are optimal, since for ` ≥ 1, we have Φ3(`,−2`) =
3`2. If we assume ϕ(n) > 2, which means ϕ(n) ≥ 4, then

ϕ(n) ≤
4

log 11
log m

which is best possible since Φ5(1,−2) = 11.

2.4 Lower bound for the cyclotomic polynomials

Theorem 4 is equivalent to the following result:

Proposition 5 ([FLW]). For n ≥ 3 and t ∈ R,

φn(t) ≥

(√
3

2

)ϕ(n)
.

2.5 The sequence (cn)n≥3

Define
cn = inf

t∈R
φn(t) (n ≥ 3).

Hence, for x and y in Z and for n ≥ 3 we have

Φn(x, y) ≥ cn max{|x |, |y |}ϕ(n).
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According to Proposition 5, for n ≥ 3 we have

cn ≥

(√
3

2

)ϕ(n)
.

Let n ≥ 3. Write n = 2e0 pe1
1 · · · p

er
r where p1, . . . , pr are odd primes

with p1 < · · · < pr , e0 ≥ 0, ei ≥ 1 for i = 1, . . . , r and r ≥ 0. Then
(i) For r = 0, we have e0 ≥ 2 and cn = c2e0 = 1.
(ii) For r ≥ 1 we have

cn = cp1 · · ·pr ≥ p−2r−2

1 .

The main step in the proof of Proposition 5 is the following:
Lemma 6 ([FLW]). For any odd squarefree integer n = p1 · · · pr with
p1 < p2 < · · · < pr satisfying n ≥ 11 and n , 15, we have

ϕ(n) > 2r+1 log p1.

Further properties of the sequence (cn)n≥3.
• lim inf

n→∞
cn = 0 and lim sup

n→∞
cn = 1.

• The sequence (cp)p odd prime is decreasing from 3/4 to 1/2.

• For p1 and p2 primes, cp1p2 ≥
1
p1
·

• For any prime p1, lim
p2→∞

cp1p2 =
1
p1
·

3 The sequence (am)m≥1

For each integer m ≥ 1, the set{
(n, x, y) ∈ N × Z2 | n ≥ 3, max{|x |, |y |} ≥ 2, Φn(x, y) = m

}
is finite. Let am the number of its elements.
The sequence of integers m ≥ 1 such that am ≥ 1 starts with the

following values of am

m 3 4 5 7 8 9 10 11 12 13 16 17
am 8 16 8 24 4 16 8 8 12 40 40 16
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3.1 Online Encyclopedia of Integer Sequences [OEIS]
Number of representations of integers by cyclotomic binary forms.

(OEIS A299214) The sequence (am)m≥1 starts with

0, 0, 8, 16, 8, 0, 24, 4, 16, 8, 8, 12, 40, 0, 0, 40, 16, 4, 24, 8, 24, 0, 0, 0, 24, 8, 12, 24, 8, 0, 32, 8, 0,
8, 0, 16, 32, 0, 24, 8, 8, 0, 32, 0, 8, 0, 0, 12, 40, 12, 0, 32, 8, 0, 8, 0, 32, 8, 0, 0, 48, 0, 24, 40, 16, 0, . . .

Integers represented by cyclotomic binary forms
(OEIS A296095) am , 0 for m =

3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 16, 17, 18, 19, 20, 21, 25, 26, 27, 28, 29, 31, 32, 34, 36, 37, 39, 40,
41, 43, 45, 48, 49, 50, 52, 53, 55, 57, 58, 61, 63, 64, 65, 67, 68, 72, 73, 74, 75, 76, 79, 80, 81, 82, . . .

Integers not represented by cyclotomic binary forms
(OEIS A293654) am = 0 for m =

1, 2, 6, 14, 15, 22, 23, 24, 30, 33, 35, 38, 42, 44, 46, 47, 51, 54, 56, 59, 60, 62, 66, 69, 70, 71, 77,
78, 83, 86, 87, 88, 92, 94, 95, 96, 99, 102, 105, 107, 110, 114, 115, 118, 119, 120, 123, 126, 131, . . .

4 Integers represented by cyclotomic binary
forms

For N ≥ 1, let A(N) be the number of m ≤ N which are represented
by cyclotomic binary forms: there exists n ≥ 3 and (x, y) ∈ Z2 with
max(|x |, |y |) ≥ 2 and m = Φn(x, y). This means

A(N) = #{m ∈ N | m ≤ N, am , 0}.

Theorem 7 ([FLW]). We have

A(N) = α
N

(log N)
1
2
− β

N

(log N)
3
4
+O

(
N

(log N)
3
2

)
as N →∞.

The number of positive integers ≤ N represented by Φ4 (namely the
sums of two squares) is

α4
N

(log N)
1
2
+O

(
N

(log N)
3
2

)
.
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The number of positive integers ≤ N represented by Φ3 (namely x2 +

xy + y2: Loeschian numbers) is

α3
N

(log N)
1
2
+O

(
N

(log N)
3
2

)
.

The number of positive integers ≤ N represented by Φ4 and by Φ3 is

β
N

(log N)
3
4
+O

(
N

(log N)
7
4

)
.

Theorem 7 holds with α = α3 + α4.
The number of positive integers ≤ N which are sums of two squares

is asymptotically α4N(log N)−1/2, where

α4 =
1
2 1

2
·

∏
p ≡ 3 mod 4

(
1 −

1
p2

)− 1
2

.

Decimal expansion of Landau-Ramanujan constant (OEIS
A064533)

α4 = 0.764 223 653 589 220 . . .

If a and q are two integers, we denote by Pa,q the set of primes
p ≡ a mod q and by Na,q any integer ≥ 1 satisfying the condition
p | Na,q =⇒ p ≡ a mod q.
An integer m ≥ 1 is of the form m = Φ4(x, y) = x2 + y2 if and only

if there exist integers a ≥ 0, N3,4 and N1,4 such that m = 2a N2
3,4 N1,4.

An integer m ≥ 1 is of the form

m = Φ3(x, y) = Φ6(x,−y) = x2 + xy + y2

if and only if there exist integers b ≥ 0, N2,3 and N1,3 such that m =
3b N2

2,3 N1,3.
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The number of positive integers ≤ N which are represented by the
quadratic form X2 + XY + Y2 is asymptotically α3N(log N)−1/2 where

α3 =
1

2 1
2 3 1

4
·

∏
p ≡ 2 mod 3

(
1 −

1
p2

)− 1
2

.

Decimal expansion of an analog of the Landau-Ramanujan
constant for Loeschian numbers (OEIS A301429)

α3 =
1

2 1
2 3 1

4
·

∏
p ≡ 2 mod 3

(
1 −

1
p2

)− 1
2

= 0.638 909 405 44 . . .

Hence,
α = α3 + α4 = 1.403 133 059 034 . . .

Using the method of Flajolet and Vardi, Bill Allombert (private com-
munication, April 2018) computed

α3 = 0.63890940544534388225494267492824509375497550802912
334542169236570807631002764965824689717911252866438814 . . .

Decimal expansion of an analog of the Landau-Ramanujan
constant for Loeschian numbers which are sums of two squares
(OEIS A301430)

β =
3 1

4

2 5
4
· π

1
2 · (log(2 +

√
3))

1
4 ·

1
Γ(1/4)

·
∏

p ≡ 5, 7, 11 mod 12

(
1 −

1
p2

)− 1
2

= 0.302 316 142 35 . . .

Using the method of Flajolet and Vardi, Bill Allombert (private com-
munication, April 2018) computed

β = 0.3023161423570656379477699004801997156024127951893696454588
678412888654487524105108994874678139792727085677659132725910 . . .
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Further developments

• Prove similar estimates for the number of integers represented by
other binary forms (done for quadratic forms); e.g.: prove similar
estimates for the number of integers which are sums of two cubes, two
biquadrates,. . .
• Prove similar estimates for the number of integers which are repre-
sented by Φn for a given n.
• Prove similar estimates for the number of integers which are repre-
sented by Φn for some n with ϕ(n) ≥ d.

5 Representation of integers by positive definite
quadratic forms

Theorem 8 (P. Bernays [B]). Let F ∈ Z[X,Y ] be a positive definite
quadratic form. There exists a positive constant CF such that, for
N → ∞, the number of positive integers m ∈ Z, m ≤ N which are
represented by F is asymptotically CFN(log N)−

1
2 .

Theorem 9 (Stewart - Xiao [S–Y]). Let F be a binary form of degree
d ≥ 3 with nonzero discriminant.
There exists a positive constant CF > 0 such that the number of

integers of absolute value at most N which are represented by F(X,Y )
is asymptotic to CFN2/d.

Proposition 10 (K. Mahler [M]). Let F be a binary form of degree
d ≥ 3 with nonzero discriminant. Denote by AF the area (Lebesgue
measure) of the domain

{(x, y) ∈ R2 | F(x, y) ≤ 1}.

For Z > 0 denote by NF (Z) the number of (x, y) ∈ Z2 such that
0 < |F(x, y)| ≤ Z . Then

NF (Z) = AF Z2/d +O(Z1/(d−1))
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as Z →∞.

The situation for positive definite forms of degree ≥ 3 is different for
the following reason: if a positive integer m is represented by a positive
definite quadratic form, it usually has many such representations; while
if a positive integer m is represented by a positive definite binary form
of degree d ≥ 3, it usually has few such representations. If F is a
positive definite quadratic form, the number of (x, y) with F(x, y) ≤ N
is asymptotically a constant times N , but the number of F(x, y) is much
smaller.
If F is a positive definite binary form of degree d ≥ 3, the number

of (x, y) with F(x, y) ≤ N is asymptotically a constant times N1/d, the
number of F(x, y) is also asymptotically a constant times N1/d.

Sums of k–th powers

If a positive integer m is a sum of two squares, there are many such
representations. Indeed, the number of (x, y) in Z × Z with x2 + y2 ≤

N is asymptotic to πN , while the number of values ≤ N taken by
the quadratic form Φ4 is asymptotic to α4N/

√
log N where α4 is the

Landau–Ramanujan constant. Hence, Φ4 takes each of these values
with a high multiplicity, on the average (π/α)

√
log N .

On the opposite, it is extremely rare that a positive integer is a sum
of two biquadrates in more than one way (not counting symmetries).

635 318 657 = 1584 + 594 = 1344 + 1334. Leonhard Euler1707 –
1783
The smallest integer represented by x4+y4 in two essentially different

ways was found by Euler, it is 635318657 = 41 · 113 · 241 · 569.
Number of solutions to the equation x4+ y4 = n with x ≥
y > 0 (OEIS A216284)
An infinite family with one parameter is known for non trivial solutions
to x4

1 + x4
2 = x4

3 + x4
4 , see:

http://mathworld.wolfram.com/DiophantineEquation4thPowers.html
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Sums of k–th powers
One conjectures that given k ≥ 5, if an integer is of the form xk + yk ,

there is essentially a unique such representation. But there is no value
of k for which this has been proved.

The situation for positive definite forms of degree ≥ 3 is different
also for the following reason. A necessary and sufficient condition for
a number m to be represented by one of the quadratic forms Φ3, Φ4, is
given by a congruence. By contrast, consider the quartic binary form
Φ8(X,Y ) = X4 + Y4. On the one hand, an integer represented by Φ8 is
of the form

N1,8(N3,8N5,8N7,8)
4.

On the other hand, there are many integers of this form which are not
represented by Φ8.
Quartan primes: primes of the form x4+y4, x > 0, y > 0 (OEISA002645)

The list of prime numbers represented by Φ8 start with

2, 17, 97, 257, 337, 641, 881, 1297, 2417, 2657, 3697, 4177, 4721, 6577, 10657, 12401, 14657,
14897, 15937, 16561, 28817, 38561, 39041, 49297, 54721, 65537, 65617, 66161, 66977, 80177, . . .

It is not known whether this list is finite or not.
The largest known quartan prime is currently the largest known gener-
alized Fermat prime: The 1353265-digit (14531065536)4 + 14.
Primes of the form x2k + y2k (See https://oeis.org/)

[OEIS A002313] primes of the form x2 + y2.
[OEIS A002645] primes of the form x4 + y4,
[OEIS A006686] primes of the form x8 + y8,
[OEIS A100266] primes of the form x16 + y16,
[OEIS A100267] primes of the form x32 + y32.

But it is known that there are infinitely many prime numbers of the
form X2 + Y4 [FI].
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