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1 Introduction

One of the oldest problem in Diophantine geometry is that of the
complete determination of the set of rational (or k-rational) points, of
a given algebraic curve defined over the rational numbers (or more
generally over a number fields). Clearly a rational curve (i.e. a curve
of genus zero) defined over a number field if it has one rational point
it has infinitely many. For algebraic curves of genus one with one
specified rational point (i.e. elliptic curves), we have the following, by
now classical, result of Mordell and Weil.

Theorem 1.1 (Mordell-Weil Theorem) Let E be an elliptic curve de-
fined over a number field k. Then the set E(k) of k-rational points of
E is a finitely generated abelian group.

The next case is that of algebraic curves of genus greater than 1. From
now on, by a curve C we mean an algebraic curve defined over the
algebraic numbers Q and for k a number field. We denote the k-
rational points of C by C(k). Mordell conjectured in 1922 that a curve
of genus at least 2 has only finitely many points over any number field.
This was proven by Faltings in 1983, see [4]
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Theorem 1.2 (Faltings) Let C be a curve defined over a number field
k. Suppose the genus of C is at least 2, then C(k) is finite.

Unfortunately Falting’s theorem is not effective, which means in
particular that there is no effective bound for the height of the points
in C(k). The aim of this seminar is to present an effective bound on
the height of the k-rational points on some families of curves, which in
turn led to the complete determination of the set of rational points for
the curves of the families in question.

2 Torsion and finiteness

Let A be an abelian variety, Γ a finitely generated subgroup and X
an irreducible subvariety of A. In this section we dwell briefly on the
following problem: If X has a large (i.e. Zariski dense) intersectionwith
Γ what can be said about X? It all started with the celebrated Manin-
Mumford conjecture (raised independently by Manin and Mumford),
proved by Raynaud [9].

Theorem 2.1 (Raynaud) Let A be an abelian variety and TorA its
torsion subgroup. Let C ⊂ A be a curve of genus ≥ 2. Then, C∩ TorA
is finite.

Both Mordell conjecture and Manin-Mumford conjecture are special
cases of the Mordell-Lang conjecture, put forward by Serge Lang in
1965 [7]. The Mordell-Lang conjecture for curves can be stated as
follows:

Mordell-Lang Conjecture Let C be an irreducible curve of a (semi)
abelian variety A defined over a number field k. Let Γ be a finitely
generated subgroup of A(k) and Γ′ a subgroup of the divisible hull of Γ
(i.e. for each x∈Γ′ there exists a non-zero integer n such that nx∈Γ). If
C is not a translate of a (semi) abelian subvariety of A, then C(k) ∩ Γ′

is finite.
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The general statement of the Mordell-Lang conjecture for varieties
was proven by McQuillan in 1995 ([8]) building on the break through
result of Faltings [5], on the result of Hindry [6] and using a result of
Vojta [12]. For more information about this topic we refer the reader
to [10]
Next, along this thread of thought, comes the theme of unlike in-

tersections initiated by Bombieri, Masser and Zannier in [1]. In this
setting one replaces the set of "special points" (i.e. Γ′) with a set of
special subvarieties (i.e. algebraic subgroups of A). In order to state the
two most relevant conjectures in this setting we need some definitions.

Definition 2.1 A variety X ⊂ A is called a torsion variety (respectively
a translate) if it is a finite union of translates of algebraic subgroups of
A by torsion points (respectively by points).

Definition 2.2 An irreducible variety X ⊂ A is called transverse (re-
spectively weak-transverse) if it is not contained in any proper translate
(respectively any proper torsion variety).

The Torsion Anomalous Conjecture, which we state below for the
case of a weak-transverse curve, has been open for several years:

Torsion Anomalous Conjecture Let C be a weak-transverse curve in
A. Then the set

C
⋂©­­­«

⋃
B algebraic subgroup

dim B≤dim A−2

B
ª®®®¬

is finite.

In the above mentioned seminal paper of Bombieri, Masser and
Zannier, there is a proof of the Torsion Anomalous Conjecture for
transverse curves in an algebraic torus. Their proof is based on the
following two statements: (here B2 denotes the union of the algebraic
subgroups of codimension at least 2)
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• The points of C ∩ B2 have bounded height.

• The points of C ∩ B2 have bounded degree.

For if the two above conditions are satisfied then the classical North-
cott theorem yields the finiteness of C ∩ B2. A central aspect of their
proof is that it is effective. This is relevant to find bounds, and even
better effective bounds for the height of points in C ∩ B2.

In the course of their investigations around the Torsion Anomalous
Conjecture, Checcoli, Veneziano e Viada proved, in [2] a very inter-
esting bound on the height of points of curves contained in a power of
a non-CM elliptic curves which we reproduce below. This result im-
proves drastically on some previous bounds proved by the same authors
in [3]. The bound proven in [3] is a consequence of a more classical
approximation used in connection with the Torsion Anomalous Conjec-
ture, we refer the reader to [3, Theorem 1.1 and Theorem 1.3], see also
[11]. The bound in [2] is obtained by introducing new key elements
in the proof. It has to be noted that this better bounds are crucial for
practical applications, two instances of which will be presented in the
final section. In order to state the theorem we need to recall a few
definitions regarding heights. Let E be an elliptic curve given in P2 by
the Weierstrass equation y2 = x3 + Ax + B with A, B integral. We let ĥ
be the Néron-Tate height on EN determined via the Segre embedding.
Given a curve C ⊂ EN we denote by h(C) the normalised height of C.
Finally we denote by hW (α) the Weil height of an algebraic number α.
The following is a simplified version of the main theorem of [2].

Theorem 2.2 Let E be a non-CM elliptic curve of Q-rank 1. Let
C ⊂ EN be an irreducibel curve of genus at least 2. Let C1 = 145 and
c1 = c1(E) = 2hW (A) + 2hW (B) + 4 with A and B the coefficients of
the Weierstrass form. Then P ∈ C(Q) has height bounded

ĥ(P) ≤ 4 · 3N−2N!degC(C1h(C)(degC) + 4C1c2(degC)2 + 2c1),
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moreover if N = 2

ĥ(P) ≤ C1 · h(C)degC + 4C1c1(degC)2 + 4c1.

If one specialises to a more particular case better bounds can be
achieved:

Corollary 2.3 Suppose (x1, y1) × (x2, y2) be the affine coordinates of
E2 ⊆ P2 × P2 with E defined over Q. Let C be the curve given in E2

defined by the additional equation p(x1) = y2, with p(X) ∈ k[X] a
non-constant polynomial of degree n. Then C is irreducible and for
P ∈ C(k) we have

ĥ(P) ≤ 2595(hW (p) + logn + 4c1)(2n + 3)2 + 4c1

where hW (p) = hW (1 : p0 : . . . : pn) is the Weil height of the coeffi-
cients of p(x) and c1 = 2log(3 + |A| + |B|) + 4

3 Explicit examples

Consider the elliptic curve E defined by the Weierstrass equation

y2 = x3 + x − 1.

In the cartesian product E × E ⊂ P2 × P2 we use affine coordinates
(x1, y1) (respectively (x2, y2) on the first factor (respectively the second
factor). Nextwe consider the {Cn} family of curves in E×E given by the
additional equation xn1 = y2. It turns out that the genus g(Cn) = 4n + 2
and Cn is irreducible for all n. As consequence of our main theorem we
obtain a sharp bound for the height of the points on Cn(Q). Moreover
for n large, the points of Cn(Q) will be integral. The bound on the
height are so sharp that one can implement in SAGE an exhaustive
search. Thus we obtain that

Theorem 3.1 For all n ≥ 1 the affine rational points of Cn are

Cn(Q) = {(1, ±1) × (1, 1)}
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Also the next example regards a family of curves, denoted by {Dn},
lying in E2 = E × E . This time the additional equation defining the
family of curves is Φn(x1) = y2 where Φn(X) is the n-th cyclotomic
polynomial. It can be shown that the curves Dn have increasing genus
and are irreducible. Moreover, consider the following non-CM elliptic
curves.

E1 : y2 = x3 − 26811x − 7320618,

E2 : y2 = x3 − 675243x − 213578568,

E3 : y2 = x3 − 110038419x + 12067837188462,

E4 : y2 = x3 − 2581990371x − 50433763600098.

These elliptic curves have Q rank 1. For this family the characteri-
sation of rational points is as follows:

Theorem 3.2 For i = 1, 2, 3, 4 the curves Dn ⊆ Ei × Ei, there are
no rational points other than the point at infinity. And for the curves
Dn ⊆ E × E we have the following affine rational points:

D1(Q) = {(2, ±3) × (1, 1)}; D2(Q) = {(2, ±3) × (2, 3)};

D3k (Q) = {(1, ±1) × (2, 3)}; D47k (Q) = {(1, ±1) × (13, 47)};

Dpk (Q) = ∅, for p , 3, 47 and if p = 2, k > 1;

D6(Q) = {(1, ±1) × (1, 1)} ∪ {(2, ±3) × (2, 3)};

Dn(Q) = {(1, ±1) × (1, 1)} if n has at least two distinct prime
factors.

Many other examples can be produced using the same techniques.
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