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1 Introduction

The Riemann zeta function ζ(s) is defined as the Dirichlet series

ζ(s) =
∞∑
n=1

1
ns

in the half-plane<(s) > 1 and it is an analytic function on C \ {1}.
Given a primitive Dirichlet character χ (mod q), with q > 1, the
Dirichlet L-function L(s, χ) is entire and satisfies

L(s, χ) =
∞∑
n=1

χ(n)
ns

for <(s) > 0.

It is well-known that the negative even integers are the so-called trivial
zeros of the Riemann zeta function, while the set

Z := {ρ ∈ C | ζ(s) = 0, ρ < −2N0}
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is the set of all non-trivial zeros of ζ(s). These zeros are non-real and
they are all located in the right half-plane <(s) > 0. The Riemann
hypothesis (RH) states that, for any ρ ∈ Z,<(ρ) = 1

2 .

For a primitive character χ modulo q ≥ 1, let κ ∈ {0, 1} be deter-
mined by χ(−1) = (−1)κ . The set of the trivial zeros of L(s, χ) is
{−κ,−2 − κ,−4 − κ, . . . }, while the set of the non-trivial zeros is

Z(χ) := {ρ ∈ C | L(ρ, χ) = 0, ρ , −2l − κ, ∀l ∈ N}.

As for the Riemann zeta function, these non-trivial zeros have posi-
tive real part, but they are not necessarily non-real. The Generalized
Riemann Hypothesis (GRH) states that

<(ρ) =
1
2

for anyρ ∈ Z ∪ Z(χ).

There is an equivalence for RH in terms of zeros of the first derivative
of the Riemann zeta function (cf. [8]).

Theorem 1 (Speiser) The following statements are equivalent

1. ζ(s) , 0 in 0 < <(s) < 1
2

2. ζ ′(s) , 0 in 0 < <(s) < 1
2 .

The result below (see [5]) is a sort of analytic analogue of Speiser’s
theorem. It basically states that ζ(s) and its first derivative have almost
the same number of zeros in the considered region.

Theorem 2 (Levison and Montgomery) Let N−(T) (and respectively
N−1 (T)) be the number of zeros of ζ(s) (resp. ζ ′(s)) in {σ + it | 0 <

σ < 1/2, 0 < t < T}, counted with multiplicity. Then, for T ≥ 2

N−(T) = N−1 (T) +O(logT),

where the implied constant is absolute.
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Similar results can be proved for Dirichlet L-functions. Let N−(T, χ)
(and respectively N−1 (T, χ)) be the number of zeros of L(s, χ) (resp.
L ′(s, χ)) in the region {σ + it | 0 < σ < 1/2, |t | < T}, counted with
multiplicity. Moreover, let

m := min{n ≥ 2 | χ(n) , 0},

i.e. m is the smallest prime number that does not divide n. Observe
that m = O(logT). The following result holds ([2]).

Theorem 3 (Akatsuka and Suriajaya) For T ≥ 2

N−(T, χ) = N−1 (T, χ) +O(m1/2 log(qT)),

where the implied constant is absolute.

This allows to show a Speiser-type equivalence for GRH (again cf. [2]).

Theorem 4 (Akatsuka and Suriajaya) Let κ = 0 and q ≥ 216. Then
the following statements are equivalent

(i) L(s, χ) , 0 in 0 < <(s) < 1
2 .

(ii) L ′(s, χ) has a unique zero in 0 < <(s) < 1
2 .

Let κ = 1 and q ≥ 23. Then the following statements are equivalent

(i) L(s, χ) , 0 in 0 < <(s) < 1
2 .

(ii) L ′(s, χ) has no zeros in 0 < <(s) < 1
2 .

Remark 1 The unique zero of the derivative for κ = 0 is the zero which
corresponds to the trivial zero of L(s, χ) at s = 0.
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2 Zeros of derivatives of the Riemann zeta
function

As for the Riemann zeta function, non-trivial zeros of ζ (k)(s) are non-
real zeros. As an upper bound for the real part of the zeros ρ of ζ (k)(s)
one can consider<(ρ) ≤ 7

4 k + 2, proved by Spira [9], even though this
bound can be slightly improved.

Remark 2 It is interesting to observe the distribution of non-trivial
zeros of ζ(s), ζ ′(s) and ζ ′′(s) (cf. [9, Fig. 1]). So far, all non-trivial
zeros of ζ(s) lie on the line <(s) = 1

2 , while those of ζ
′(s) and ζ ′′(s)

move further and further to the right. Moreover, except for a pair of
exceptional zeros of ζ ′′(s) in the left half-plane, the non-trivial zeros
of the first and second derivative seem to appear always in pairs.

Let now N(T) (resp. Nk(T)) be the number of non-trivial zeros ρ
of ζ(s) (resp. ζ (k)(s)), with 0 < =(ρ) < T , counted with multiplicity.
Then, von Mangoldt [12] and Berndt [3] respectively proved

N(T) = g(T) +O(logT)

Nk(T) = h(T) +O(logT)

where

g(T) :=
T
2π

log
T
2π
−

T
2π

and h(T) :=
T
2π

log
T
4π
−

T
2π
.

Under the Riemann hypothesis, the error terms can be improved to

O
(

logT
log logT

)
and O

(
logT

(log logT)1/2

)
respectively. The result for ζ(s) is due to Littlewood [6], for the first
derivative to Akatsuka [1] and the extension to all k ≥ 2 to Suriajaya
[10]. It can be observed that the main term does not depend on k.
Assuming RH, Ge [4] showed that the error term can be improved to
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O
(

logT
log logT

)
for the first derivative, while the same result for k ≥ 2 is

expected to hold but it is not proved.

Let now
∑ (k) denote the sum over non-trivial zeros ρ of ζ (k)(s), for

k ≥ 0, with 0 < =(ρ) < T , counted with multiplicity and let

fk(T) =
kT
2π

log log
T
2π
+

T
2π

(
1
2

log 2 − k log log 2
)
− k

∫ T
2π

2

dt
log t

.

Since the zeros of ζ(s) are symmetric with respect to the critical line
<(s) = 1

2 , one gets

Σ
(0)

(
<(s) −

1
2

)
= 0.

On the other hand, for higher derivatives the zeros are no more sym-
metric. In [5], Levinson and Montgomery proved that

Σ
(k)

(
<(s) −

1
2

)
= fk(T) +O(logT).

Under RH, the error term can be improved to O((log logT)2). This
result is due to Akatsuka [1] for k = 1 and to Suriajaya [10] for k ≥ 2.

3 Zeros of derivatives of Dirichlet L-functions

In [13], Yıldırım described a zero-free region for the derivatives of the
Dirichlet L-functions.

Theorem 5 (Yıldırım) For any ε > 0, there exists a constant K = Kε,k
such that L(k)(s, χ) , 0 holds in σ + it ∈ C

������ σ > 1 +
m
2

(
1 +

√
1 +

4k2

m log m

) 
∪ {σ + it ∈ C| |σ + it | > qK, σ < −ε, |t | > ε}.
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He also classified the zeros of L(k)(s, χ) in the following way:

• trivial zeros, located in {σ + it |σ ≤ −qK, |t | ≤ ε}.

• vagrant zeros, located in {σ + it | |σ + it | ≤ qK, σ ≤ −ε}.

• non-trivial zeros, located in σ + it

������ −ε < σ ≤ 1 +
m
2

(
1 +

√
1 +

4k2

m log m

)  .
Let now Nk(T, χ) be the number of non-trivial and vagrant zeros ρ of
L(k)(s, χ), with |=(ρ)| ≤ T , counted with multiplicity.

Theorem 6 (Yıldırım) For T ≥ 2, we have

Nk(T, χ) = h(T, χ) +O(qK logT),

where
h(T, χ) :=

T
π

log
qT

2mπ
−

T
π
.

Remark 3 In this case, the error term is big in terms of the modulus
q of the character χ, since K is big. Assuming GRH does not help to
improve the error term in terms of q.

4 Zeros of the first derivative L′(s, χ)

In [2], Akatsuka and Suriajaya proved that there exist no vagrant zeros
for the first derivative of a Dirichlet L-function. A zero-free region is
described in the result below.

Theorem 7 (Akatsuka and Suriajaya) Let χ be a primitive Dirichlet
character modulo q > 1. Then L ′(s, χ) has no zeros in{
σ + it

���� σ ≤ 0, |t | ≥
6

log q

}
∪

{
σ + it

���� σ ≤ −q2, |t | ≥
12

log |σ |

}
.
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Remark 4 The zero-free region can be extended to the line <(s) = 1
2

under GRH, avoiding zeros of L(s, χ).

Remark 5 Except for a finite number of zeros, each zero of L ′(s, χ) in
<(s) ≤ 0 corresponds to a trivial zero of L(s, χ).

More precisely, the following result holds.

Theorem 8 (Akatsuka and Suriajaya) For each j ∈ N0:

• L ′(s, χ) has exactly a unique zero at

−2 j − κ +O
(

1
log( jq)

)
in the strip −2 j − κ − 1 < <(s) < −2 j − κ + 1.

• L ′(s, χ) has no zeros on<(s) = −2 j − κ + 1.

1. If κ = 0 and q ≥ 7, then L ′(s, χ) has no zeros in the strip
−1 ≤ <(s) ≤ 0.

2. If κ = 1 and q ≥ 23, then L ′(s, χ) has a unique zero in the strip
−2 ≤ <(s) ≤ 0

Remark 6 If the character is odd, the unique zero of L ′(s, χ) corre-
sponds to the trivial zero of L(s, χ) at s = −1.

For the excluded characters, there is at most a finite number of zeros of
L ′(s, χ) in−1 ≤ <(s) ≤ 0 if the character is even and in−2 ≤ <(s) ≤ 0
if the character is odd. Then, except for a finite number of Dirichlet
character, there is a one-to-one correspondence between the zeros of
L ′(s, χ) in<(s) ≤ 0 and the trivial zeros of L(s, χ). Thus, the zeros in
the left half-plane of L ′(s, χ) can all be classified as trivial.
One can now focus on the non-trivial zeros in the right half-plane.

In [7], Selberg proved that

N(T, χ) = g(T, q) +O(log(qT)),
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where N(T, χ) is the number of zeros ρ of L(s, χ) with<(ρ) > 0 and
|=(ρ)| ≤ T , counted with multiplicity and

g(T, q) :=
T
π

log
qT
2π
−

T
π
.

He also improved the error term to O
(

log(qT )
log log(qT )

)
under GRH.

In the unconditional case, Akatsuka and Suriajaya [2] improved the
error term to O(m1/2 log(qT)) for the number of non-trivial zeros of
L ′(s, χ) in the right half-plane. Recalling that m = O(log q), notice
that the error term is small.
Assuming GRH, Suriajaya [11] got an error term of the form

O
(
log q + A(q,T)

m1/2 log(qT)
log log(qT)

)
,

where A(q,T) is a comparison factor

A(q,T) := min
{
(log log(qT))1/2, 1 +

m1/2

log log(qT)

}
.

Another improvement to the error term, under GRH, was proved by Ge
(2018). He got

O
(

log(qT)
log log(qT)

+
√

m log(2m) log(qT)
)
.

Finally, as in the case of ζ(s) and its derivatives, one can consider the
real part distribution of the zeros. Let

∑ (0) and
∑′ denote the sum over

the zeros ρ, with<(ρ) > 0 and |=(ρ)| ≤ T , counted with multiplicity,
of L(s, χ) and L ′(s, χ) respectively. Then,

Σ
(0)

(
<(ρ) −

1
2

)
= 0

and
Σ
′

(
<(ρ) −

1
2

)
= f1(T, χ) +O(m1/2 log(qT)),
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where

f1(T, χ) =
T
π

log log
qT
2π
+

T
π

(
1
2

log m − log log m
)
−

2
q

∫ qT
2π

2

dt
log t

.

This result was proved by Akatsuka and Suriajaya [2], while in [11]
Suriajaya also proved that, under the generalized Riemann hypothesis,
the error term can be improved to

O(m1/2(log log(qT))2 + m log log(qT) + m1/2 log q).
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