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1 Introduction

The Riemann zeta function {(s) is defined as the Dirichlet series
o 1
{(s) = Z P}
=1

in the half-plane R(s) > 1 and it is an analytic function on C \ {1}.
Given a primitive Dirichlet character y (mod g), with ¢ > 1, the
Dirichlet L-function L(s, x) is entire and satisfies

L(s, )—ZX;”) for R(s)> 0.
n=1

It is well-known that the negative even integers are the so-called trivial
zeros of the Riemann zeta function, while the set

Z:={peCl{(s)=0p¢-2No}
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is the set of all non-trivial zeros of /(s). These zeros are non-real and
they are all located in the right half-plane R(s) > 0. The Riemann
hypothesis (RH) states that, for any p € Z, R(p) = %

For a primitive character y modulo ¢ > 1, let x € {0, 1} be deter-
mined by y(-1) = (=1)*. The set of the trivial zeros of L(s, x) is
{—k,—2 — k,—4 — k, ... }, while the set of the non-trivial zeros is

Z(x) ={peC| L(px) =0,p# -2l — x, VIl € N}.

As for the Riemann zeta function, these non-trivial zeros have posi-
tive real part, but they are not necessarily non-real. The Generalized
Riemann Hypothesis (GRH) states that

1
R(p) = 3 for anyp € ZU Z(x).

There is an equivalence for RH in terms of zeros of the first derivative
of the Riemann zeta function (cf. [8]).

Theorem 1 (Speiser) The following statements are equivalent
1. Z(s)#0in0 < R(s) < %
2. (s)#0in0 < R(s) < %

The result below (see [5]) is a sort of analytic analogue of Speiser’s
theorem. It basically states that £(s) and its first derivative have almost
the same number of zeros in the considered region.

Theorem 2 (Levison and Montgomery) Let N~ (T) (and respectively
N[ (T)) be the number of zeros of {(s) (resp. {'(s)) in {o +it | 0 <
o < 1/2,0 <t < T}, counted with multiplicity. Then, for T > 2

N~ (T) =N, (T)+ O(logT),

where the implied constant is absolute.
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Similar results can be proved for Dirichlet L-functions. Let N~(7, x)
(and respectively N[ (T, x)) be the number of zeros of L(s, x) (resp.
L’(s, x)) in the region {o + it | 0 < o < 1/2,|t| < T}, counted with
multiplicity. Moreover, let

m :=min{n > 2 | y(n) # 0},

i.e. m is the smallest prime number that does not divide n. Observe
that m = O(log T). The following result holds ([2]).

Theorem 3 (Akatsuka and Suriajaya) ForT > 2
N™(T, x) = Ny (T, x) + O(m'* log(¢T)),
where the implied constant is absolute.

This allows to show a Speiser-type equivalence for GRH (again cf. [2]).

Theorem 4 (Akatsuka and Suriajaya) Let k = 0 and g > 216. Then
the following statements are equivalent

(i) L(s, x) #0in0 < R(s) < %
(ii) L'(s, x) has a unique zero in 0 < R(s) < %
Let k = 1 and q > 23. Then the following statements are equivalent
(i) L(s, x) #0in 0 < R(s) < 1.
(ii) L'(s, x) has no zeros in 0 < R(s) < %

Remark 1 The unique zero of the derivative for k = 0 is the zero which
corresponds to the trivial zero of L(s, x) at s = 0.
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2 Zeros of derivatives of the Riemann zeta
function

As for the Riemann zeta function, non-trivial zeros of {*)(s) are non-
real zeros. As an upper bound for the real part of the zeros p of {*)(s)
one can consider R(p) < ZTk + 2, proved by Spira [9], even though this
bound can be slightly improved.

Remark 2 It is interesting to observe the distribution of non-trivial
zeros of £(s), {'(s) and (" (s) (cf. [9, Fig. 1]). So far, all non-trivial
zeros of {(s) lie on the line R(s) = %, while those of ¢’(s) and ¢ (s)
move further and further to the right. Moreover, except for a pair of
exceptional zeros of " (s) in the left half-plane, the non-trivial zeros
of the first and second derivative seem to appear always in pairs.

Let now N(T) (resp. N(T)) be the number of non-trivial zeros p
of £(s) (resp. ¢{M)(s)), with 0 < F(p) < T, counted with multiplicity.
Then, von Mangoldt [12] and Berndt [3] respectively proved

N(T) = g(T)+ O(logT)
Ni(T) = h(T) + O(log T)
where

T T T T
T):= —— d T ——1 _— -
8(T) = g27r 2r an (7) Og47r o2n

Under the Riemann hypothesis, the error terms can be improved to

1
o[ 1oeT ) 4 of__1ogT _
loglogT (loglog T)/2
respectively. The result for £(s) is due to Littlewood [6], for the first
derivative to Akatsuka [1] and the extension to all k£ > 2 to Suriajaya

[10]. It can be observed that the main term does not depend on k.
Assuming RH, Ge [4] showed that the error term can be improved to
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0 logT

ToglogT for the first derivative, while the same result for £ > 2 is

expected to hold but it is not proved.

Let now Y, ® denote the sum over non-trivial zeros p of {*)(s), for
k > 0, with 0 < J(p) < T, counted with multiplicity and let

T
1 o dt
—log2 — kloglogZ) —k/
2

kT T T
T)= — loglog — + — —
fi(T) 7 oglog (2 log?

b4 2r 2w

Since the zeros of {(s) are symmetric with respect to the critical line
R(s) = %, one gets

Z(O)(‘R(s) - %) =0.

On the other hand, for higher derivatives the zeros are no more sym-
metric. In [5], Levinson and Montgomery proved that

Z(k)(‘R(s) - %) = fi(T) + O(log T).

Under RH, the error term can be improved to O((loglogT)?). This
result is due to Akatsuka [1] for k£ = 1 and to Suriajaya [10] for £ > 2.

3 Zeros of derivatives of Dirichlet L-functions

In [13], Yildirim described a zero-free region for the derivatives of the
Dirichlet L-functions.

Theorem 5 (Yildirim) Forany e > O, there exists a constant K = K¢ i
such that L®)(s, y) # 0 holds in

2
o+iteC 0'>1+§(1+ 1+ 4k )

mlogm

U{o +it € Cllo +it] > ¢¥, 0 < —¢,|t] > €}.
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He also classified the zeros of L®¥)(s, y) in the following way:
e trivial zeros, located in {0 + it|o < —¢¥, |t| < €}.
e vagrant zeros, located in {0 + it||o + it| < g¥,0 < —€}.

e non-trivial zeros, located in

) m 4k?
o +it —e<0'S1+E 1+4/1+

mlogm

Let now N (T, x) be the number of non-trivial and vagrant zeros p of
L®)(s, y), with |3(p)| < T, counted with multiplicity.

Theorem 6 (Yildirim) For T > 2, we have
Ni(T, x) = h(T, x) + O(q% log T),

where

Remark 3 In this case, the error term is big in terms of the modulus
q of the character y, since K is big. Assuming GRH does not help to
improve the error term in terms of q.

4 Zeros of the first derivative L'(s, y)

In [2], Akatsuka and Suriajaya proved that there exist no vagrant zeros
for the first derivative of a Dirichlet L-function. A zero-free region is
described in the result below.

Theorem 7 (Akatsuka and Suriajaya) Ler y be a primitive Dirichlet
character modulo g > 1. Then L'(s, x) has no zeros in

6
o <0t = }U{O’+it
logg

{o’+it

5 12
o< =gt = .
log o
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Remark 4 The zero-free region can be extended to the line R(s) = %
under GRH, avoiding zeros of L(s, x).

Remark 5 Except for a finite number of zeros, each zero of L' (s, x) in
R(s) < 0 corresponds to a trivial zero of L(s, x).

More precisely, the following result holds.
Theorem 8 (Akatsuka and Suriajaya) For each j € Ny:

o L'(s, x) has exactly a unique zero at

. 1
A O(Ioqu))

inthe strip =2j —k — 1 < R(s) < -2j —k + 1.

e L'(s, x) has no zeros on R(s) = =2j — k + 1.

1. If x = 0and q = 7, then L'(s, x) has no zeros in the strip
-1 <R(s) <0.

2. If k = 1 and q = 23, then L'(s, x) has a unique zero in the strip
-2<R(s)<0

Remark 6 If the character is odd, the unique zero of L'(s, x) corre-
sponds to the trivial zero of L(s, x) at s = —1.

For the excluded characters, there is at most a finite number of zeros of
L'(s, y)in—1 < R(s) < Oifthe characterisevenandin—2 < R(s) <0
if the character is odd. Then, except for a finite number of Dirichlet
character, there is a one-to-one correspondence between the zeros of
L'(s, x) in R(s) < 0 and the trivial zeros of L(s, x). Thus, the zeros in
the left half-plane of L’(s, ) can all be classified as trivial.

One can now focus on the non-trivial zeros in the right half-plane.
In [7], Selberg proved that

N(T, x) = g(T, q) + O(log(qT)),
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where N(T, y) is the number of zeros p of L(s, y) with R(p) > 0 and
|J(p)| £ T, counted with multiplicity and
qT

T
g(T,q) = —log— — —.
b4 2w

He also improved the error term to O % under GRH.

In the unconditional case, Akatsuka and Suriajaya [2] improved the
error term to O(m'/?log(¢T)) for the number of non-trivial zeros of
L’(s, x) in the right half-plane. Recalling that m = O(log ¢), notice
that the error term is small.

Assuming GRH, Suriajaya [11] got an error term of the form

m!/? log(¢T)
0|1 + A(g, T)———=——=|,
( 084 A T TontaT) )

where A(g, T') is a comparison factor
1/2 m'/?
A(g,T) := min{ (logl 7))/ 1+ ——— ;.
(¢.7) mm{(og ) +10g10g(qT)}

Another improvement to the error term, under GRH, was proved by Ge
(2018). He got

log(¢T)
loglog(¢T)

+ \/mlog(2m) log(qT)) .

Finally, as in the case of £(s) and its derivatives, one can consider the
real part distribution of the zeros. Let ), ©) and 3" denote the sum over
the zeros p, with R(p) > 0 and |J(p)| < T, counted with multiplicity,
of L(s, y) and L’(s, y) respectively. Then,

=0 (%G - 3) =0

and .
2'(9‘(,0) - 5) = fi(T, x) + O(m'*log(qT)),
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where

qT
T qT T(1 2 [ dt
T, x) = —loglog — + —| = logm — log| - = —.
AT, x) —loglogo— + —| 5 logm — log ogm) 7)), Togr

This result was proved by Akatsuka and Suriajaya [2], while in [11]
Suriajaya also proved that, under the generalized Riemann hypothesis,
the error term can be improved to

O(m'*(loglog(gT))* + mloglog(qT) + m'/* log g).
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