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Foreword

This volume contains the proceedings of the Fourth mini symposium
of the Roman Number Theory Association. The conference was held
on April 18-20, 2018 at the Università degli Studi Roma Tre.This
symposium was a milestone for RNTA: for the first time, the duration
was of three days and we also hosted, as a satellite conference, the 11th
PARI/GP Atelier.

As organizers of the symposium, and promoters of the association,
we would like to thank the main speakers, as well than the participants
who presented a contributed talk, for the high scientific contribution
o�ered, and the "scribas" who wrote these notes. We also thank the
ALGANT Consortium, CNRS-GDRI, LYSM “Ypatia Laboratory of
Mathematical Sciences”, the department of Mathematics and Physics
of the Università Roma Tre, the Università Europea di Roma and the
Università Roma Tre for funding the event.

The Roman Number Theory Association

The idea of creating this association stems from the desire to bring
together Roman researchers who share interest in number theory.

This conference, whose proceedings are collected here, represents
the evidence of our goal: to be a key player in the development of a
strong Roman community of number theorists, to foster a specific sci-
entific program but also, and more importantly, to create a framework
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of opportunities for scientific cooperation for anyone interested in num-
ber theory. Among these opportunities we can enlist the Scriba project
as well as the international cooperation with developing countries and
the support of young researcher in number theory with special regards
to those coming from developing countries.

The association, even tough founded and based in Rome has an
international spirit and we strongly believe in international cooperation.

Our statute is available on the association’s website (www.rnta.eu)
and it clearly states that our e�orts and our funds will be devoted
entirely to the development of Number Theory. This will be achieved
in several ways: by directly organizing events - an annual symposium
in Rome as well as seminars distributed over the year; by participating
and supporting, both scientifically and financially, workshops, schools
and conferences on the topics of interest; by creating a fund to subsidize
the participation of young Italian number theorists and mathematicians
from developing countries to the activities of the international scientific
community.

The Scriba project

The proceedings of a conference usually collect the most significant
contributions presented during the conference. The editorial choice, in
this case, as for the proceedings of the First, the Second and Third Mini
Symposium, was slightly peculiar. In the weeks before the symposium,
we identified a list of PhD students and young researchers to whom
we proposed to carry out a particular task: that one of the "scriba".
Each young scholar was then paired with one of the main speakers and
was asked to prepare a written report on the talk of the speaker he was
assigned to. Of course in doing so the scribas had to get in contact with
speakers after the conference in order to get the needed bibliographical
references as well as some insight on the topic in question. We would
like to highlight that both the speakers and scribas joined the project
enthusiastically.

The reasons for this choice lies in the most essential aim of our
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Association: introducing young researchers to number theory, in all its
possible facets. The benefits of this project were twofold: on one hand,
the scribas had to undertake the challenging task of writing about a
topics di�erent from their thesis or their first article subject and learn
about a new possible topic of research and, on the other, they had the
possibility to collaborate with a senior researcher and learn some trick
of the trade.

The manuscripts were approved by the speakers and lastly reviewed
by the editors of the present volume.

1 Report on RNTA Activities

In the last five years, the Roman Number Theory Association has been
involved in many di�erent activities, here the list of the most recent and
significant.

The Fifth mini Symposium of the association will take place on 10-
12 April 2019 and, again, have a duration of three days; we will also
host again, as a satellite conference, the 12th PARI/GP Atelier. The
annual symposium represents for us a very special moment to bring
together most people involved in RNTA and especially our Advisory
Board. The scriba project is already launched for this symposium as
well.

Besides, the Association collaborated in various ways to other events
in 2018 and 2019, namely

• 13th Atelier PARI/GP, Università Roma Tre, April 8-9, 2019;

• The Eleventh International Conference on Science and Mathe-
matics Education in Developing Countries, The National Uni-
versity of Laos, Laos, held in November 2018;

• 11th Atelier PARI/GP, Università Roma Tre, April 16-17, 2018;

Another very important engagement of the association is the organi-
sation of CIMPA schools. The main idea of CIMPA Schools, supported
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by UNESCO, perfectly espouses one of the central aspects of RNTA,
namely organisation and funding of scientific and educational activities
in Developing Countries. The most recent (or future) CIMPA school
we are involved in are the following:

• CIMPA research school on Group Actions in Arithmetic and Ge-
ometry, Universitas Gadjah Mada Yogyakarta, Indonesia, Febru-
ary 17-28, 2020

• WAMS research school on Introductory topics in Number Theory
and di�erential Geometry, King Khalid University, Abha, Saudi
Arabia, June 16-23, 2019

• CIMPA research school on Elliptic curves: arithmetic and com-
putation. Universidad de la República, Montevideo, Uruguay,
February 11 - 22, 2019.

• WAMS research school on Representation Theory, College of
Science, University of Sulaymaniyah, Sulaymaniyah, Kurdistan
Region, Iraq, February 7 - 9, 2019

• Emil Artin International School in Mathematics for Students and
WAMS research school on The Mathematics of Artin’s conjec-
tures, Yerevan State University, Yerevan, Armenia May 21 - 25,
2018

• CIMPA research school on Arithmétique algorithmique et cryp-
tographie. Université de Kinshasa, Kinshasa, Democratic Re-
public of Congo, May 7 - 18, 2018.

• CIMPA research school on Explicit Number Theory, The Wit-
watersrand University, Johannesburg, South Africa, January 8th-
19th, 2018;

• WAMS research school on Topics in Analytic and Transcendental
Number Theory, Institute for Advanced Studies in Basic Sciences
(IASBS) Zanjan, Iran, to be held in July 1 - July 13 2017;
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• CIMPA-ICTP research school on Artin L-functions, Artin’s prim-
itive roots conjecture and applications, Nesin Mathematics Vil-
lage, �irince, held in May 29 - June 9 2017.

• CIMPA-ICTP research school on Théorie Algébrique des nom-
bres et applications notamment à la cryptographie, Université
Félix Houphouët Boigny, Abidjan, held in April 10-22, 2017;

• WAMS research school on Topics in algebraic number theory
and Diophantine approximation , Salahaddin University, Erbil-
Kurdistan Region, IRAQ, held in March 12- 22, 2017;

The Association also promotes, organizes and supports the Nepal
Algebra Project. This is a course on Fields and Galois Theory at the
Master of Philosophy (M.Phil) and master level (M.Sc.) at Tribhuvan
University, Kirtipur, Kathmandu, Nepal.

The project has a span of six years starting with the summer of 2016,
ending with the summer of 2021. Each of the six years one course of
50 hours will be o�ered at Tribhuvan University by several lecturers
from developed countries.

During the years, the RNTA, collaborated with many institutions,
here the list of our main partners:

1. International Center for Pure and Applied Mathematics (CIMPA);

2. Istituto Nazionale di Alta Matematica "F. Severi" (INDAM);

3. Abdus Salam International Centre for Theoretical Physics (ICTP);

4. Ministero degli A�ari Esteri e della Cooperazione Internazionale
(MAECI);

5. Foundation Compositio Mathematica, The Netherlands;

6. Number Theory Foundation (NTF);

7. Centre national de la recherche scientifique (CNRS);

xi



8. International Mathematical Union (IMU);

9. Algebra, Geometry and Number Theory consortium (ALGANT);

10. Università Roma Tre;

11. Università Europea di Roma.

M����� M�������, U��������� E������ �� R���
email: marina.monsurro@unier.it

F�������� P���������, D����������� �� M��������� � F�����,
U��������� R��� T��
email: pappa@mat.uniroma3.it

V������ T��������, D����������� �� M��������� � F�����, U��-
������� R��� T��
email: valerio@mat.uniroma3.it

A��������� Z���������, D����������� �� S������ M���- �������,
F������ �� I�����������, U��������� �� P����
email: alessandro.zaccagnini@unipr.it
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PROCEEDINGS OF THE
ROMAN NUMBER THEORY ASSOCIATION
Volume �, Number �, March ����, pages �-�

Alp Bassa

Rational point on curves over
finite fields and Drinfeld modular

varieties
Written by Dario Antolini

Let’s consider C a smooth projective absolutely irreducible curve
over a finite field Fq (shortly, a curve). As usual, one can associate to
C a Zeta function together with a corresponding Riemann Hypothesis,
which we know to be true thanks to the result of Hasse–Weil.

In particular, they gave us the so-called Hasse–Weil bound for the
number of Fq-rational points of C:

#C(Fq)  q + 1 + 2g(C)pq, (1)

where g(C) denotes the genus of the curve C. Here, we write down
just the upper bound because, as the genus increases over a fixed finite
field, the lower bound becomes useless.

A first improvement of this bound was given by Ihara ([6]). Starting
from the inequality

#C(Fq2) � #C(Fq),
together with the Weil conjectures, he showed that the upper bound (1)
is not good as g(C) � 0.
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Moreover, Ihara considered the following quantity:

A(q) := lim sup
g(C)!1

#C(Fq)
g(C)

where the lim sup is taken over all the curves C over the (fixed) field
Fq when g(C) tends to infinity. He showed that the number A(q)
always exists and depends only on the base field Fq. Thus, from the
Hasse–Weil bound (1), we have

A(q)  2
p

q.

An important result on these side was given by Drinfeld and Vl�du�
([3]) proving that

A(q)  p
q � 1, (2)

and this bound is the best known since 1983.
Conversely, the lower bound case was (historically) more di�cult.
The first result is due to Serre ([7]) showing that the number A(q) is

always nonzero:
A(q) > 0,

while Ihara ([5]) specilized in the case q = l2, with l prime power,
obtaining:

A(q) � p
q � 1. (3)

So, by comparison with (2), we can conclude the equality:

A(l2) = l � 1.

The last improvement on this side is given by Zink ([8]) when q = p3

and it states the following inequality:

A(p3) � 2(p2 � 1)
p + 2

. (4)

On proving his result (3), Ihara considered a sequence of Shimura
curves over a same base field with increasing genus. Let’s sketch the
main ideas due to Ihara in the case of modular curves.
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Let N be a positive integer. Denote by X0(N) the modular curve
with �0(N)-structure, where the a�ne locus (non-cuspidal points)
parametrizes isomorphism classes of elliptic curves over C (also over
Q) together with a cyclic N isogeny. It is a well-known result that
X0(N) can be described over Q, and, furthermore, after the work of
Deligne–Rapoport ([2]), it has a (smooth projective irreducible) model
in Z[1/N]. Hence, for every prime number p - N , we can reduce X0(N)
mod p and obtain a (irreducible) curve fX0(N) over Fp.

Moreover, this curve classifies the isomorphism classes of elliptic
curves over Fp + additional structure (and cusps). The interesting
fact is that fX0(N) has many Fp2-points, whose non-cuspidal points
correspond to the so-called supersingular elliptic curves.

Now, let’s consider an increasing sequence of positive integers {Ni},
with p - Ni for all i and Ni ! 1 as i ! 1. Then, Ihara proved that

lim
i!1

#fX0(Ni)(Fp2)
g(fX0(Ni))

= p � 1

by using computations involving Shimura curves.
Now, let’s point out the key points on the proof. In particular, why

do we get just a result for Fp2-points and not other extensions of Fp?
What Ihara was able to discover is the existence of Fp2-points in the

modular curves fX0(Ni), in particular of supersingular elliptic curves.
It is well-known that their j-invariant lie inside Fp2 , and one obtains
exactly this degree-2 extension because the modular curve parametrizes
(isomorphism classes of) elliptic curves over C as well as Z-lattices of
rank 2 inside C (up to homothety).

So, in order to generalize this bound for q = ln with l prime integer
and n > 2, one has to look at lattices of rank n, but inside another
algebraically closed field, since the field complex numbers o�er us
just rank-2 lattices. (We cannot consider rank-1 lattices because their
moduli space will be 0-dimensional.) First, replace the integersZ inside
its fraction field Q by the ring A := Fq[T] inside the field F := Fq(T);
hence, consider its completion F1 at the 1 place and its algebraic
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closure F1. Since this extension is of infinite degree, the latter is
no more complete, meanwhile its completion C1 is still algebraically
closed.

In this equal-characteristic setting, we need an analogue of the elliptic
curve: it is called Drinfeld module, and it can be shown ([4, Theorem
4.6.9]) that the moduli space of (isomorphism classes of) Drinfeld
modules with rank n is equivalent to the moduli spaces of A-lattices of
rank n inside C1 (up to homothety), as far as for elliptic curve (with
n = 2).

In a similar way, one can define a level structure on Drinfeld mod-
ules: it turns out that the moduli space of rank-n Drinfeld modules
together with (nontrivial) level structure can be represented by an (n�1)-
dimensional a�ne scheme M over A. Then, as in the elliptic curve
case, we want to reduce this scheme modulo a prime element of A. In
this case, we look for an ideal "not intersecting the level structure" (in
some sense, like V(p) does not intersect V(N) for p - N inside Spec Z),
and this is generated by a polynomial P(T) 2 A = Fq[T], since the ring
A is a PID. The reduction modulo this ideal gives us a representable
moduli space fM of dimension n � 1 with many Fpn -rational points
over a degree-n extension of Fq[T]/(P(T)). Finally, there is a similar
notion of supersingular Drinfeld modules and they are defined over this
extension of degree n.

Let’s come back to Ihara’s trick. Consider a family of moduli spaces
of rank-n Drinfeld modules {Mi}i with nontrivial level structure and
a polynomial P(T) not intersecting any of these level structures. So,
it makes sense to consider the family {gMi := Mi mod P} given by
reduction modulo the (ideal generetad by) P(T). Starting with the
scheme gM1, look at a supersingular point inside it and a suitable curve
passing through this special point, where suitable means that it is (and
can be) chosen so that it contains many supersingular points. Then, pull
back this curve to the schemes gMi and get other nice curves, so that
one has a family of 1-dimensional sub-locus containing supersingular
points.
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Beside this theory, in [1] Bassa, Beelen, Garcia and Stichtenoth write
down explicit recursive equations for these nice curves. In this way,
they get a lower bound for A(q) when q = p2m+1 is an odd power of
a prime number p (and m � 1). They indeed find a sort of harmonic
average between two successive Drinfeld–Vl�du� upper bounds (2):

A(p2m+1) � 2
1

pm�1 +
1

pm+1�1

. (5)

In particular, This lower bound can recover Zink’s inequality (4) just
setting m = 1 (so that q = p3).

Last, we want to mention some applications of this result. After
the historical Hasse–Weil bound, the problem of finding curves with
many rational points becomes again important (ACTUAL) after the
formulation of codes theory and the Goppa’s construction of good
codes, as long as other applications to cryptography.

In a theoretical side, this result can be used on the study of automor-
phisms and level structures of those curves, and also on their covering
(in this case, not Galois).
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PROCEEDINGS OF THE
ROMAN NUMBER THEORY ASSOCIATION
Volume �, Number �, March ����, pages �-��

Peter Stevenhagen

On Redei’s reciprocity law

Written by Francesco Battistoni

1 Quadratic reciprocity law

Since their discover, reciprocity laws have been a very powerful tool in
Number Theory, because of their theoretical meaning and their practical
usefulness. The first instance of these laws is the Quadratic Reciprocity
Law, which was proved by Gauss in [3].
Let p be an odd prime number and a 2 Z coprime with p. The Legendre
symbol is defined as:

✓
a
p

◆
=

(
1 if a is a square mod p;
�1 otherwise.

The reciprocity we refer to lies in the fact, proved by Gauss, that the
Legendre Symbol is "essentially symmetric", in the following sense:

Theorem 1 (Quadratic Reciprocity Law) Let p and q be two distinct

odd prime numbers. Then

✓
p
q

◆ ✓
q
p

◆
= (�1)

p�1
2

q�1
2 .
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One can obtain the following generalization: let a, b be coprime inte-
gers, and define the Jacobi symbol as:

✓
a
b

◆
=
÷
p-2a

✓
a
p

◆ordp (b)
.

Theorem 2 Let a, b be two odd coprime integers. Then✓
a
b

◆ ✓
b
a

◆
= (�1) a�1

2
b�1

2 (�1)
sign(a)�1

2
sign(b)�1

2 . (1)

2 Hilbert symbols

A similar statement can be proved also for generic number fields, using
some knowledge of Class Field Theory.
Let K be a number field,P a prime of K (either finite or infinite) and KP
the completion. Let L := KP

⇣q
K⇤
P

⌘
be the maximal abelian extension

of KP of exponent 2. Given a, b 2 K⇤
P, we define the Hilbert symbol at

P as:

(a, b)P :=
�a(

p
b)p

b
2 {±1}

where �a 2 Gal(L/KP) is the Artin symbol of a. From Class Field
Theory we get the following:

Theorem 3 (Universal Quadratic Reciprocity Law) Let K be a num-

ber field, a, b 2 K⇤
. Then (a, b)P = 1 for almost every P and÷

P1
(a, b)P = 1.

This statement generalizes the Reciprocity Law expressed in (1): in
fact, when K = Q, the odd primes properly dividing a and b give the
Legendre symbols, while the right hand side is given by (a, b)2 and
(a, b)1.
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3 Motivation: 2k-rank of class groups

Let K := Q(
p

D) be a quadratic field of discriminant D, and let C be its
narrow class group. It is known since Gauss that this group is of great
importance in Number Theory, especially because of its connection
with binary quadratic forms, and therefore it has been widely studied.
Gauss himself understood that it was easier to deal with the 2-part of
this group, and discovered the following:

Theorem 4 (Genus Theory) Write D =
Œt

i=1 di, with di either a

signed prime ±p ⌘ 1 mod 4 or an element of {4,±8}. For every

i = 1, . . . , t, let di be the prime ideal of K dividing di.
Then #C/C2 = #C[2] = 2t�1

and C[2] is generated by the classes [di]’s
modulo a single relation.

Define the 2k-rank of an abelian group A as r2k := dimF2 A[2k]/A[2k�1].
The theorem above characterizes the 2-rank of the class group C.
The study of the 4-rank of C required more instruments, and the first
results were obtained by Redei [5], by means of Class Field theory: in
fact, C/C2 ' Gal(G/K) where G := K(

p
d1, . . . ,

p
dt ) is the maximal

finitely unramified abelian extension of K which is abelian also overQ.
Using the natural morphism � : C[2] ! C/C2, we define a map R via
the commutative diagram:

F2d1 � · · · � F2dt Gal(G/Q) ' Œt
j=1 Gal(Q(

p
dj)/Q)

C[2] C/C2 ' Gal(G/K).

R

�

The combination of the map � and of the Artin isomorphism implies
that the map R (called the Redei map) is described by a matrix (ci j)
whose entries are connected to the action of the Artin symbol of di on

11



p
dj . When i , j, in fact, the computation of the ci j’s is brought back

to Legendre symbols in the following way:

for di odd: (�1)ci j =
✓

dj

di

◆
;

for di even: ci j = 0 if 2 splits in Q(
p

dj), ci j = 1 otherwise.

Finally, cii is chosen in order to have
Õ

j ci j = 0 in F2. This setting
leads to the following:

Theorem 5 Let r4 be the 4-rank of C. Then r4 = t � 1 � rankF2 R.

The study of the 8-rank of C requires even more e�orts: it was
originally started by Redei himself in [6]. The result was achieved via
the definition of a new symbol, which is seen to satisfy a new reciprocity
law.

4 Redei’s symbol and Redei’s reciprocity law

Let a, b, c 2 Z squarefree integers , 1 satisfying:

A) (a, b)p = (a, c)p = (b, c)p = 1 8p  1;

B) S(a) \ S(b) \ S(c) = ;where S(x) := {p : p ramifies in Q(px)/Q}.

Condition A) implies that x2 � ay2 � bz2 = 0 has a non-trivial solution
(x, y, z) inQ. Let � := x+ y

p
a and define K := Q(

p
ab), L := Q(pa,

p
b),

F := L(p�). F is a cyclic extension of K with degree 4, and a dihedral
extension of Q with degree 8.
Denote with �(a) and �(b) the discriminants of Q(pa) and Q(

p
b) re-

spectively.

Lemma 1 The field F as above can be chosen such that:

• F is unramified outside S(a) [ S(b);

12



• F is unramified over 2 whenever �(a)�(b) is odd, or one of

�(a),�(b) is 1 mod 8;

• If the pair (�(a),�(b)) is equal to (4, 5) or (5, 4) mod 8, then the

local extension Q2(
p

a) ⇢ F ⌦ Q2 is of conductor 2;

• 8c integral ideal of K with norm |c |, the Artin symbol Artc,F/K is

in Gal(F/L) ' {±1} and does not depend on the choice of c.

• If a, b > 0, for every infinite prime the symbol Art1,F/K is in

Gal(F/L) and is non-trivial if and only if F is totally complex.

A field F satisfying these properties is said to be correct for a, b and c.
Let a, b, c 2 Z satisfying A) and B). We define the Redei symbol as

[a, b, c]F :=

(
Artc,F/K if c > 0
Art1,F/K · [a, b,�c]F if c < 0.

Lemma 2 Let a, b, c as before and let F and F 0
be correct fields for

a, b, c. Then [a, b, c]F = [a, b, c]F0.

From now on we denote the Redei symbol simply as [a, b, c]. This
symbol is easily seen to be symmetric in the first two entries, but the
following law establishes a stronger fact:

Theorem 6 (Redei Reciprocity Law) For every a, b, c satisfying the

previous conditions, we have

[a, b, c] = [b, a, c] = [a, c, b].

5 Applications to the study of the 8-rank

We now present how the Redei symbol is useful for the study of the
8-rank r8. Recall that R is the map giving the value of the 4-rank r4.

13



Theorem 7 There exists a map R8 : KerR ! Fr4
2 such that r8 = r4 �

rankR8. Moreover, let (d(i)
1 , d

(i)
2 )r4

i=1 such that the fields Q

✓q
d(i)

1 ,
q

d(i)
2

◆

generate the extension L̂/K of degree 2r4 corresponding to C/(C[2] \
2C). Then R8 maps an ideal class [m], withm of norm m, to the r4-tuple

([d(i)
1 , d

(i)
2 ,m]).

As a final application, the theory developed so far allows to provide
a new proof for the following result:

Theorem 8 Let d 2 Z not a square. Then there exists a Galois exten-

sion ⌦8/Q such that, if p1 and p2 are odd prime numbers that do not

divide d and have the same Artin symbol in ⌦8/Q, then C(Q(
p

dp1))
and C(Q(

p
dp2)) have the same 2,4,8-rank.

This statement was first conjectured by Cohn and Lagarias in [1] and
proved by Stevenhagen in [7]. A simpler proof via the Redei symbols
was given by Corsman [2] and corrected by Iadarola [4].
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Pro-p-extensions of number fields
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Written by Zouhair Boughadi

This note presents a summary of the talk of Christian Maire at the
fourth mini symposium of the Roman number theory association based
on a joint work with F. Hajir and R. Ramakrishna. The main results
of the talk are a new record to the constant of Martinet and the answer
to a question asked by Ihara. The construction of infinite unramified
pro-p-extension of a number field plays a crucial role in the proof of
these results.
Let G be a pro-p-group, we denote h

i(G) = dimFp H
i(G, Fp), d(G) =

h
1(G), and r(G) = h

2(G)

Theorem 0.1 (Golod-Shafarevich) Let G be a non trivial finite p-

group. Then

r(G) > d(G)2
4
.

For a number field K , let’s denote by K
0 the maximal pro-p-extension

of K which is unramified everywhere and G = Gal(K 0/K) its Galois
group. We know that the group G is a finitely presented pro-p-group.
Moreover, by class field theory, we know that d(G) is exactly the p-rank
of the class group of K. We also have bounds for the number of relations
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of G, obtained by Koch and Shafarevich :

d(G)  r(G)  d(G) + r2 + r1 � 1 + �K,p,

where r2 (resp. r1) is the number of complex (resp. real) embeddings
and �K,p is equal 1 or 0 depending on whether K contains or not the
pth root of unity µp.

Theorem 0.2 If d(ClK ) � 2+2
p

r2 + r1 + �K,p, then K
0/K is infinite.

Let G be a pro-p-group, and let

1 // R // F // G // 1

be a minimal presentation of G, then the pro-p-group F is a free group
with d(G) generators.
Let ⇤ := Fp[[F]] be the Iwasawa algebra of F and

I = ker(⇤! Fp)

be the augmentation ideal of ⇤.
The depth !(g) of an element g of F \ {1} is defined as

!(g) = max{n, g � 1 2 I
n}.

The Zassenhaus filtration of F is given by

Fn = {g 2 F, !(g) � n}.

It is well known that R/R
p[F, R] ' H

2(G, Fp). Let (⇢i)i be a set of
generators of R/R

p[F, R], for n � 1 we set

rn = |{⇢i, !(⇢i) = n}|.

Note that r1 always equals zero because of the following isomorphism

G/G
p[G,G] ' F/F

p[F, F].
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Theorem 0.3 (Vinberg, 1965) If the series 1� d(G)t +Õn rnt
n

has a

zero for a given t 2 [0, 1], then the pro-p-group G is infinite.

As an application, if one has no information on the relations, we take
r2 = r(G) to obtain the Golod Shafarevich theorem. More generally
if we suppose that r2 = · · · = rk�1 = 0 we get a refinement of Golod
Shafarevich bound; namely, if G is finite then

r(G) > d(G)k
kk

(k � 1)k�1.

A similar result was proven by Koch-Venkov and Schoof, when p is
an odd prime and K a quadratic field. Then r2(G) = 0, furthermore if
h

1(G)  3, K
0/K is infinite. More generally Kisilevsky-Labute asserts

that this result remains true when K is a CM field.
The main results of the talk can be viewed as further applications. We
start with the new record of Martinet’s constant. Let K be a number
field and (r1, r2) its signature ([K : Q] = r1 + 2r2). We define the root
discriminant of K to be

RdK := |DiscK |1/[K :Q],

where DiscK is the discrimant of K . For number fields with
[K : Q] >> 0 and by classical methods we have

RdK � A
t
B

1�t

where t = r1/[K : Q] denotes the type of K .
The constants A and B are still unknown, but lower bounds are given

Minkowski Odlyzko Odlyzko (GRH)
A � 7.3 60.8 215.3
B � 5.8 22.3 44.7

Two upper bounds for the constants A and B are the constants of
Martinet

↵(0, 1) := lim inf
n

min{RdK, [K : Q] = 2n,Ktotally imaginary}
↵(1, 0) := lim inf

n
min{RdK, [K : Q] = n,Ktotally real}
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It is well known that we have

A  ↵(1, 0) and B  ↵(0, 1).

On the other hand, upper bounds for ↵(., .) occur using the discrim-
inant formula and infinite unramified extensions. The first one was
given by Jaques Martinet in 1978; he proved that the field K =

Q(
p

2,
p
�23, cos(2⇡/11)) has an infinite unramified extension, and so

↵(0, 1)  RdK ⇠ 92.4 · · ·

Martinet (1978) Hajir-Maire (2002)
↵(1, 0)  1058.6· · · 954.3· · ·
↵(1, 0)  92.4 · · · 82.2 · · ·

The new record is given in this talk

↵(1, 0)  857.5 · · · (1)
↵(0, 1)  78.5 · · · (2)

This record is obtained by observing that the totally imaginary example
of Hajir-Maire improving Martinet’s record gives an infinite unramified
extension with root discriminant less than 78.5. This extension is
obtained by cutting the maximal unramified extension outside a prime
ideal of norm equal to 9, by a fourth power of its generator of its inertia
group.
The second application is the answer to Ihara’s question. Given an
infinite unramified extension L/K , denote by S(L/K) the set of prime
ideals of K that decompose completely in L/K .

’
p2S(L/K)

log N(p)p
log N(p)

< 1

Can S(L/K) be infinite?
An answer is the following
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Theorem 0.4 (HMR, 2018) Suppose that d(ClK ) > 2+2
p

r1 + r2 + 1.

Then there exists an infinite unramified pro-p-extension L/K for which

S(L/K) is infinite.

The last one is about p-rational fields. Let Kp be the maximal pro-
p-extension of K unramified outside p. Class field theory gives a
description of the abelianization of Gp

Gp/[Gp,Gp] ' Zr2+1+�K
p

where �K is the Leopoldt defect, conjecturally null (Leopoldt conjec-
ture)

Definition 0.5 When Gp is pro-p-free, the number field K is said p-

rational.

In 2016, Gras gave the following

Conjecture 1 Every number field K is p-rational for all p � C(K).

Theorem 0.6 Let K/Q be a totally imaginary extension of degree at

least 12. Choose p > 2 such that:

i) p splits totally in K/Q;

ii) K is p-rational.

Then there exists a finite extension F/K in Kp/K such that F
ur,p/F is

infinite.
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Investigating solutions in integers of systems of algebraic equations
is one of the main objects of Diophantine Geometry. Given polyno-
mials f1(X1, ..., XN ),..., fk(X1, ..., XN ) 2 Z[X1, ..., XN ], we consider the
solutions (x1, ..., xN ) 2 ZN or QN to the system

8>>><
>>>:

f1(x1, ..., xN ) = 0
...

fk(x1, ..., xN ) = 0

The complex solutions to the above system form an algebraic variety.
We shall be especially interested in the case where such an algebraic
variety is a surface. We shall see that many interesting open problems
on Diophantine equations boil down to describing integral or rational
points on algebraic surfaces; we shall then speak of superficial prob-
lems.

The Box problem and Euler bricks.

A first superficial problem about rational points is the so called the
box problem: Does there exists a box whose sides, face diagonals and
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space diagonal all have integral length ?
The equations corresponding to the box problem are the following:

8>>>>><
>>>>>:

x
2
1 + x

2
2 = y2

3
x

2
2 + x

2
3 = y2

1
x

2
3 + x

2
1 = y2

2
x

2
1 + x

2
2 + x

2
3 = z

2

(1)

Note that it is a system of homogenous equations. Viewing each solu-
tion as a point (x1 : x2 : x3 : y1 : y2 : y3 : z) in the six-dimensional
projective space, the system (1) defines an algebraic surface S ⇢ P6.
The points on this surface we are interested in are the rational points
outside the ‘trivial‘ curves where some coordinate vanishes.

The surface S is of general type: after Bombieri’s Conjecture, it is
believed that its rational points are not Zariski-dense. However, it is
unkown whether it admits one single non-trivial rational point.

We could relax the conditions by omitting the requirement that the
space diagonal of the box be rational. In other words, we are searching
for triples of integers (x1, x2, x3) such that any two of them belong to
a Pytagorean triple. Such solids are common called Euler bricks. An
example is given by the solution

(x1 : x2 : x3 : y1 : y2 : y3) = (44 : 117 : 240 : 267 : 244 : 125). (2)

For this problem, the resulting surface is a (singular model of a) K3
surface; its rational points are Zariski-dense, as we shall now prove.

Let X be this surface, which is then defined in the five-dimensional
projective space by the system of equations

8>>><
>>>:

x
2
1 + x

2
2 = y2

3
x

2
2 + x

2
3 = y2

1
x

2
3 + x

2
1 = y2

2

(3)

First note that its only singularities are the isolated points

(0 : 0 : 1 : 1 : 1 : 0), (0 : 1 : 0 : 1 : 0 : 1), (1 : 0 : 0 : 0 : 1 : 1).
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Letting C be the (plane) conic of equation x
2
1 + x

2
2 = y2

3 , the projection
⇡ : X 99K C (undefined only on the first singular point) sending

X 3 (x1 : x2 : x3 : y1 : y2 : y3) 7! (x1 : x2 : y3)

admits for generic fibers the curves of genus 1 of equation
(

x
2
2 + x

2
3 = y2

1
x

2
3 + x

2
1 = y2

2
(4)

These curves are irreducible and smooth whenever x1x2y3 , 0. For
each point p = (x1 : x2 : y3) on the conic C, the fiber Ep = ⇡�1(p)
admits a distinguished point Op, namely the point

Op = (x1 : x2 : 0 : x2 : x1 : y3).

Taking the point Op for the origin, a group law on Ep is well defined,
so that Ep becomes an elliptic curve. Note the presence of three other
rational points, namely (x1 : x2 : 0 : �x2 : x1 : y3), (x1 : x2 : 0 : x2 :
�x1 : y3) and (x1 : x2 : 0 : �x2 : �x1 : y3); these points are torsion
points for the group law.

Consider now the following rational curveD on the surface, parametrized
as follows: for every point (a : b : c) in the conic D 0 : a

2 + b
2 = c

2,
put 8>>>>>>>>>>><

>>>>>>>>>>>:

x1 = a(4b
2 � c

2)
x2 = b(4a

2 � c
2)

x3 = 4abc

y1 = b(4a
2 + c

2)
y2 = a(4b

2 + c
2)

y3 = c
3

This curve, which gives rise to an infinite family of Euler bricks, was
found by Saunders already in 1740.
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Note that the map

(a : b : c) 7! '(a : b : c) = (x1 : x2 : y3)
= (a(4b

2 � c
2) : b(4a

2 � c
2) : c

3) 2 C

is a degree three covering of the conic C by the isomorphic conic D 0

(which is also isomorphic to the rational curve D ⇢ X ⇢ P5). Now,
each fiber Ep of the already described elliptic fibration intersects the
conic in three points; if the point p = (x1 : x2 : y3) 2 C comes from a
rational point of D via the map ' described above, one of these points
on Ep is rational. We then obtain that infinitely many elliptic curves
Ep adimt an extra rational point, in addition to the point Op and the
three mentioned torsion points. This new rational point is in general of
infinite order (as we shall see in a moment), so infinitely many fibers
Ep contain infinitely many rational points. This shows that the rational
points on the surface are Zariski-dense.

Geometrically, the points on Ep, coming from the curve D 0 can be
described as follows: consider the two projections ⇡ : X ! C and
' : D 0 ! C; the correponding fiber product gives rise to a new surface
Y endowed with a finite map  : Y ! X and an elliptic fibration
Y ! D 0. This elliptic fibration admits a section � : D ! Y. The
image of a point q = (a : b : c) 2 D 0 is a point �(q) 2 Y such that

⇡( (�(q))) = '(q).

It remains to show that infinitely many points �(q), for q a rational
point on D 0 are non-torsion. By well-known result, this amounts to
prove that � is not identically torsion, which is equivalent to saying
that for at least one point q, �(q) is non-torsion. We leave to the reader
the task of verifying that for q = (3 : 4 : 5) (the simples Pytagorean
triple!), the image of �(q) on X, namely the point appearing in (2), is
non-torsion on the corresponding elliptic curve.

Let us come back to our original surface S whose (non-trivial)
rational points correspond to the (possible) solutions to the original
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Box problem. As we said, it is a surface of general type, and we do not
know whether it contains any non-trivial rational point, and not even
whether its rational points might form a infinite set, or a Zariski-dense
set.

We conjecture the finiteness of its rational points, but we can prove
unconditionally only the result below, for which we need the following
definition: Let R be the radical function, associating to a positive real
number the product of its prime divisors. Put

R(x1, x2, x3) := R(gcd (x1, x2). gcd (x2, x3). gcd (x3, x1)).

Then we can prove

Theorem 0.1 For any (possible) infinite sequences in S(Q),

R(x1, x2, x3) �! 1.

In the above statement, it is meant that the rational point (x1 : x2 :
x3 : y1 : y2 : y3 : z) is written with coprime integral coordinates. The
Theorem impliess that one cannot take the coordinates to be pairwise
coprime. Actually, it is easy to see that the prime 2 must divide at least
one of the gcd(x1, x2), gcd(x2, x3), gcd(x3, x1); the theorem states more-
over that infinitely many other primes must appear in the corresponding
gcd, for every sequence of solutions.
Proof. The proof consists of an application of the Chevalley-Weil
theorem; namely, we construct a finite covering Z ! X to which the
rational points of X can be lifted to points defined over a number field
which only depends on R(x1, x2, x3). Then apply Falting’s theorem to
the surface Z, which turns out to be the product of two curves.

Suppose by contradiction that R(x1, x2, x3) is bounded on an infinite
sequence of rational points. Then there exists a finite set of primes
S such that all the rational points in such a sequence never reduce
to one singular point of the surface S modulo any prime outside the
set S. In another language, they are S-integers with respect to the
subvariety formed by the singular locus of the surface (note that after
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desingularizing, such a locus becomes a finite union of irreducible
curves).

For each pair of indices 1  h < k  3, one of the equations (1)
defining S implies that for each rational point of the surface the quantity
x

2
h + x

2
k is a perfect square. Now, in the ring Z[i] the above expression

factors as
x

2
h + x

2
k = (xh + ixk)(xh � ixk).

If the product is a square and the factors are coprime, each factor is a
square (at least up to multiplication by a unit in the ring Z[i]): this is the
basic principle behind the so called Chevalley-Weil theorem. We are
supposing that the two factors can have common prime divisors only
outside the set S (more precisely, outside the set of primes in Z[i] lying
above one prime of S). Hence, there exists a finite extension  of Q(i)
such that each factor xh + ixk is a square in the ring of integers of such
a number field.

We then obtain that the rational points on S lift to - rational points
on the variety defined by the system of equations

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

x1 + ix2 = u
2
3

x1 � ix2 = v2
3

x2 + ix3 = u
2
1

x2 � ix3 = v2
1

x3 + ix1 = u
2
2

x3 � ix1 = v2
2

x
2
1 + x

2
2 + x

2
3 = z

2

(5)

This is the equation of another surface Z covering by a finite map (of
degree 8) our surface S. We claim that Z is isomorphic to the product
of a genus 5 curve with itself. Then, by Faltings’ theorem, the surface
Z contains only finitely many rational point on any given number field,
concluding the argument.

Let us prove our claim. Looking first at the last equation in (5),
we see that the surface Z is a degree 64 cover of a smooth quadric,
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which is isomorphic, over the complex (and even over the number field
Q(i)) to the square of the projective line. The covering Z ! P1 ⇥ P1
ramifies only over the curves of equation xh ± ixh = 0, which are pairs
of lines. Removing their pre-images from the surface Z, and calling
Z⇤ the corresponding open surface, we obtain an unramified cover
Z⇤ ! (P1 \ (F))2, where F is a finite set of cardinality 6. Now, every
unramified covering of a product is covered by a product of unramified
covers; in our case, we have an abelian unramified cover of P1 \ F, of
type (2, 2, 2), obtained as a fibred product of three degree 2 covers each
ramified over two points; the genus of the resulting curve turns out to
be five, so Faltings’ theorem provides finiteness.

The Markov equation
The equation

x
2 + y2 + z

2 = 3xyz,

is called the Markov equation. It is the equation of a singular a�ne
surface M in three-space. Markov triples are defined as the solutions
(x, y, z), with x, y, z positive integers, to Markov’s equation; we call any
positive integer x which appears in a Markov triple a Markov number,
and we call any pair (x, y) such that for some integer z the triple (x, y, z)
is a Markov triple a Markov pair. A question about the arithmetic
nature of Markov numbers is the following: does the greatest prime
factor of a Markov number tend to infinity? If not, there would exist
infinitely many Markov numbers which are S-units for a fixed finite set
of places S; it is still an open problem.

Recalling that R(.) denotes the radical of an integer the problem
boils down to understanding whther R(x) must tend to infinity on every
infinite sequence of Markov numbers. We do not know the answer, but
dispose of the weaker result:

Theorem 0.2 (Theorem 1 in [2]) For every infinite sequences of Markov
pairs, we have
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R(xy) �! 1.

Idea of the proof. The proof uses the subspace theorem after reducing
to a problem about itegral points. Suppose that R(xy) is bounded on an
infinite sequence. Then for some fixed integer R, the Markov equation
has infinitely many solutions (x, y, z) where z 2 Z and x, y are units in
the ring Z[1/R].

Note that once x, y are fixed integers, the Markov equation in z can
be solved whenever the quantity

9x
2y2 � 4(x2 + y2)

is a perfect square. Putting x
2 = u, y2 = v we obtain the quadratic

equation
9uv � 4u � 4v = �2,

which in homogeneous form becomes

9uv � 4uw � 4vw = �2. (6)

This is the equation of a smooth quadric surface in P3. The condition
that u, v, � are integers amounts to an integrality condition on the rational
point (u : v : w : �) with respect to the divisor w = 0 on the surface
(see [1], chap. 1 for a precise definition of the notion of integrality
with respect to a divisor). Similarly, requiring that x, y, so u, v, are
R-units amounts to the integrality with respect to the divisor uv = 0.
We must then consider the complement of the divisor D of equation
uvw = 0 on the smooth quadric defined by (6). This divisor is the sum
of three smooth conics; identifying the surface with the product P1⇥P1,
the divisor D has bidegree (3, 3); note that any canonical divisor K on
P1 ⇥ P1 had bidegree (�2 � 2), so the sum D + K is ample. According
to Vojta’s Conjecture, the D-integral points on the surface should not
be Zariski-dense. Although we are not able to prove Vojta’s Conjecture
for this class of open surfaces, an application of the Subspace Theorem
as described in [2] proves the desired result when z is supposed to be
an integer in the classical sense, not merely an R-integer.
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Elliptic curves over Q
Let E be an elliptic curve over Q be defined by a Weierstrass equation:

y2 = x
3 + ax + b,

where a, b 2 Z are integers with 4a
3 �27b

2 , 0. For a rational solution
P = (x1, x2) 2 Q2 of the above equation, one can write the rational
numbers x, y in a unique way as

(x, y) = ( u
d2 ,

v
d3 ),

for coprime integers u, v and d > 0. We define the denominator of
P = (x, y) to be the integer d(P) = d.
The following Conjecture, which is a consequence of Vojta’s conjecture
on surfaces, gives a criterion for identifying elliptic curves by studying
the denominators of their rational points.

Conjecture 1 Let E1 and E2 be two elliptic curves over Q with in-
finitely many rational points. Suppose there exist infinitely many pairs
(P1, P2) 2 E1(Q) ⇥ E2(Q) for which

(⇤) d(P1) = d(P2).

Then E1 and E2 are isomorphic, and after identifying E1 ' E2, for all
but finitely many solutions (P1, P2) to (⇤), P1 = ±P2.

Although the problem is formulated in terms of rational points on
curves, it turns out to be in fact a problem on integral points on surfaces,
as we shall see in a moment. We first recall a related result of Corrles-
Rodriganez and Schoof from [4]:

Proposition 0.3 Let P1 2 E1(Q) and P2 2 E2(Q) of infinite order; if

R(d(nP1))|R(d(nP2))

for all n 2 N, then E1 and E2 are isogenous over Q.
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A second conclusion asserts that for all but finitely many solutions, P2
is the image of P1 by a suitable isogeny E1 ! E2.

The next theorem is a particular case of the above Conjecture; it
is a curious application of a general result of Vojta on subvarieties of
semi-abelian varieties.

Theorem 0.4 Let E1 and E2 be two elliptic curves defined over Q.
Suppose that for infinitely many pairs (P1, P2) 2 E1(Q) ⇥ E2(Q),

d(P1) = d(P2) and d(2P1) = d(2P2). (7)

Then E1 is isomorphic to E2 and, after identifying E1 with E2, for all
but finitely many such pairs, P1 = ±P2.

This is Theorem 3.32 in [3]. The proof consists in viewing the solu-
tions to (7) as integral points on the complement of a certain divisors in
a blow-up of the surface E1 ⇥ E2. Such an open surface can be embed-
ded into a semi-abelian variety, namely the product of the multiplicative
group by the abelian surface E � 1 ⇥ E2, and then the mentioned result
by Vojta applies.
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1 Introduction

One of the oldest problem in Diophantine geometry is that of the
complete determination of the set of rational (or k-rational) points, of
a given algebraic curve defined over the rational numbers (or more
generally over a number fields). Clearly a rational curve (i.e. a curve
of genus zero) defined over a number field if it has one rational point
it has infinitely many. For algebraic curves of genus one with one
specified rational point (i.e. elliptic curves), we have the following, by
now classical, result of Mordell and Weil.

Theorem 1.1 (Mordell-Weil Theorem) Let E be an elliptic curve de-

fined over a number field k. Then the set E(k) of k-rational points of

E is a finitely generated abelian group.

The next case is that of algebraic curves of genus greater than 1. From
now on, by a curve C we mean an algebraic curve defined over the
algebraic numbers Q and for k a number field. We denote the k-
rational points of C by C(k). Mordell conjectured in 1922 that a curve
of genus at least 2 has only finitely many points over any number field.
This was proven by Faltings in 1983, see [4]
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Theorem 1.2 (Faltings) Let C be a curve defined over a number field

k. Suppose the genus of C is at least 2, then C(k) is finite.

Unfortunately Falting’s theorem is not e�ective, which means in
particular that there is no e�ective bound for the height of the points
in C(k). The aim of this seminar is to present an e�ective bound on
the height of the k-rational points on some families of curves, which in
turn led to the complete determination of the set of rational points for
the curves of the families in question.

2 Torsion and finiteness

Let A be an abelian variety, � a finitely generated subgroup and X
an irreducible subvariety of A. In this section we dwell briefly on the
following problem: If X has a large (i.e. Zariski dense) intersection with
� what can be said about X? It all started with the celebrated Manin-
Mumford conjecture (raised independently by Manin and Mumford),
proved by Raynaud [9].

Theorem 2.1 (Raynaud) Let A be an abelian variety and TorA its

torsion subgroup. Let C ⇢ A be a curve of genus � 2. Then, C\ TorA

is finite.

Both Mordell conjecture and Manin-Mumford conjecture are special
cases of the Mordell-Lang conjecture, put forward by Serge Lang in
1965 [7]. The Mordell-Lang conjecture for curves can be stated as
follows:

Mordell-Lang Conjecture Let C be an irreducible curve of a �semi�
abelian variety A defined over a number field k. Let � be a finitely
generated subgroup of A(k) and �0 a subgroup of the divisible hull of �
�i.e. for each x2�0 there exists a non-zero integer n such that nx2��. If
C is not a translate of a �semi� abelian subvariety of A, then C(k)\ �0
is finite.
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The general statement of the Mordell-Lang conjecture for varieties
was proven by McQuillan in 1995 ([8]) building on the break through
result of Faltings [5], on the result of Hindry [6] and using a result of
Vojta [12]. For more information about this topic we refer the reader
to [10]

Next, along this thread of thought, comes the theme of unlike in-
tersections initiated by Bombieri, Masser and Zannier in [1]. In this
setting one replaces the set of "special points" (i.e. �0) with a set of
special subvarieties (i.e. algebraic subgroups of A). In order to state the
two most relevant conjectures in this setting we need some definitions.

Definition 2.1 A variety X ⇢ A is called a torsion variety (respectively
a translate) if it is a finite union of translates of algebraic subgroups of
A by torsion points (respectively by points).

Definition 2.2 An irreducible variety X ⇢ A is called transverse (re-
spectively weak-transverse) if it is not contained in any proper translate
(respectively any proper torsion variety).

The Torsion Anomalous Conjecture, which we state below for the
case of a weak-transverse curve, has been open for several years:

Torsion Anomalous Conjecture Let C be a weak-transverse curve in
A. Then the set

C
Ÿ©≠≠≠

´
ÿ

B algebraic subgroup
dim Bdim A�2

B
™ÆÆÆ
¨

is finite.

In the above mentioned seminal paper of Bombieri, Masser and
Zannier, there is a proof of the Torsion Anomalous Conjecture for
transverse curves in an algebraic torus. Their proof is based on the
following two statements: (here B2 denotes the union of the algebraic
subgroups of codimension at least 2)
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• The points of C \ B2 have bounded height.

• The points of C \ B2 have bounded degree.

For if the two above conditions are satisfied then the classical North-
cott theorem yields the finiteness of C \ B2. A central aspect of their
proof is that it is e�ective. This is relevant to find bounds, and even
better e�ective bounds for the height of points in C \ B2.

In the course of their investigations around the Torsion Anomalous
Conjecture, Checcoli, Veneziano e Viada proved, in [2] a very inter-
esting bound on the height of points of curves contained in a power of
a non-CM elliptic curves which we reproduce below. This result im-
proves drastically on some previous bounds proved by the same authors
in [3]. The bound proven in [3] is a consequence of a more classical
approximation used in connection with the Torsion Anomalous Conjec-
ture, we refer the reader to [3, Theorem 1.1 and Theorem 1.3], see also
[11]. The bound in [2] is obtained by introducing new key elements
in the proof. It has to be noted that this better bounds are crucial for
practical applications, two instances of which will be presented in the
final section. In order to state the theorem we need to recall a few
definitions regarding heights. Let E be an elliptic curve given in P2 by
the Weierstrass equation y2 = x3 + Ax + B with A, B integral. We let ĥ
be the Néron-Tate height on EN determined via the Segre embedding.
Given a curve C ⇢ EN we denote by h(C) the normalised height of C.
Finally we denote by hW (↵) the Weil height of an algebraic number ↵.
The following is a simplified version of the main theorem of [2].

Theorem 2.2 Let E be a non-CM elliptic curve of Q-rank 1. Let

C ⇢ EN
be an irreducibel curve of genus at least 2. Let C1 = 145 and

c1 = c1(E) = 2hW (A) + 2hW (B) + 4 with A and B the coe�cients of

the Weierstrass form. Then P 2 C(Q) has height bounded

ĥ(P)  4 · 3N�2N!degC(C1h(C)(degC) + 4C1c2(degC)2 + 2c1),
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moreover if N = 2

ĥ(P)  C1 · h(C)degC + 4C1c1(degC)2 + 4c1.

If one specialises to a more particular case better bounds can be
achieved:

Corollary 2.3 Suppose (x1, y1) ⇥ (x2, y2) be the a�ne coordinates of

E2 ✓ P2 ⇥ P2
with E defined over Q. Let C be the curve given in E2

defined by the additional equation p(x1) = y2, with p(X) 2 k[X] a

non-constant polynomial of degree n. Then C is irreducible and for

P 2 C(k) we have

ĥ(P)  2595(hW (p) + logn + 4c1)(2n + 3)2 + 4c1

where hW (p) = hW (1 : p0 : . . . : pn) is the Weil height of the coe�-

cients of p(x) and c1 = 2log(3 + |A| + |B|) + 4

3 Explicit examples

Consider the elliptic curve E defined by the Weierstrass equation

y2 = x3 + x � 1.

In the cartesian product E ⇥ E ⇢ P2 ⇥ P2 we use a�ne coordinates
(x1, y1) (respectively (x2, y2) on the first factor (respectively the second
factor). Next we consider the {Cn} family of curves in E⇥E given by the
additional equation xn1 = y2. It turns out that the genus g(Cn) = 4n + 2
and Cn is irreducible for all n. As consequence of our main theorem we
obtain a sharp bound for the height of the points on Cn(Q). Moreover
for n large, the points of Cn(Q) will be integral. The bound on the
height are so sharp that one can implement in SAGE an exhaustive
search. Thus we obtain that

Theorem 3.1 For all n � 1 the a�ne rational points of Cn are

Cn(Q) = {(1, ±1) ⇥ (1, 1)}
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Also the next example regards a family of curves, denoted by {Dn},
lying in E2 = E ⇥ E . This time the additional equation defining the
family of curves is �n(x1) = y2 where �n(X) is the n-th cyclotomic
polynomial. It can be shown that the curves Dn have increasing genus
and are irreducible. Moreover, consider the following non-CM elliptic
curves.

E1 : y2 = x3 � 26811x � 7320618,
E2 : y2 = x3 � 675243x � 213578568,
E3 : y2 = x3 � 110038419x + 12067837188462,
E4 : y2 = x3 � 2581990371x � 50433763600098.

These elliptic curves have Q rank 1. For this family the characteri-
sation of rational points is as follows:

Theorem 3.2 For i = 1, 2, 3, 4 the curves Dn ✓ Ei ⇥ Ei, there are

no rational points other than the point at infinity. And for the curves

Dn ✓ E ⇥ E we have the following a�ne rational points:

D1(Q) = {(2, ±3) ⇥ (1, 1)}; D2(Q) = {(2, ±3) ⇥ (2, 3)};

D3k (Q) = {(1, ±1) ⇥ (2, 3)}; D47k (Q) = {(1, ±1) ⇥ (13, 47)};

Dpk (Q) = ?, for p , 3, 47 and if p = 2, k > 1;

D6(Q) = {(1, ±1) ⇥ (1, 1)} [ {(2, ±3) ⇥ (2, 3)};

Dn(Q) = {(1, ±1) ⇥ (1, 1)} if n has at least two distinct prime

factors.

Many other examples can be produced using the same techniques.
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1 Introduction

Let K be a discrete local field with valuation v, O its valuation ring,
k = O/h⇡i its residue field, which we assume to have characteristic
di�erent from 2, 3, 5, 7. In the following, we will be allowed to freely
work on finite extensions of K , and we will say “after a finite extension
of K”. When F is an integral polynomial describing a plane curve, we
denote by F̄ its reduction modulo ⇡.

Given a genus 3 non-hyperelliptic curve C/K , we want to determine
the reduction type of its stable model C/O, possibly after a finite
extension of K . In other words, we want to distinguish between

• C has hyperelliptic reduction if the reduction of its stable model
C ⌦ k is a hyperelliptic curve of genus 3.

• C has non-hyperelliptic reduction if the reduction of its stable
model C ⌦ k is a non-hyperelliptic curve of genus 3.

• C has bad reduction if the reduction of its stable model C ⌦ k is
not a (smooth) curve of genus 3.
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Example 1.1 Let’s consider the Klein quartic C over Q, defined by
the equation x

3y + y3
z + z

3
x = 0. It is a smooth plane quartic (non-

hyperelliptic) of genus 3. Its reduction is non-singular for every prime
di�erent from 7, in which case it is singular, irreducible and has 3
points.
By changing coordinates, we can write the curve C1, defined over
Q(

p
�7) and isomorphic to C, given by the equation

(x
2 + y2 + z

2
)
2 +

p
�7 + 7

2
(x

2y2 + y2
z

2 + z
2
x

2
) = 0. (1)

When reducing modulo 7, we get the equation

(x
2 + y2 + z

2
)
2 = 0

which represents an hyperelliptic curve.

More generally, the main result concerning the relations between plane
quartics and hyperelliptic genus 3 curves is the following, which can
be found in [1].

Proposition 1.2 Let s > 0 be an integer, G 2 O[x, y, z] a primitive
quartic form and Q 2 O[x, y, z] a primitive quadratic form. Assume
that Q̄ is irreducible and Q̄ = 0 intersects Ḡ = 0 transversely in 8
distinct k̄-points.
Then the smooth quartic C/K : Q

2 + ⇡2s
G = 0 has hyperelliptic

reduction.

For the sake of brevity, we can gather the hypothesis of the previous
statement in the following definition.

Definition 1.3 Given a smooth plane quartic C/K , if we can find a new
curve K-isomorphic to C satisfying the hypothesis of the Proposition,
we say that C admits a good toggle model.
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By explicit calculation, we can see that, indeed, the Klein quartic admits
a good toggle model given precisely by (1), taking Q = x

2 + y2 + z
2,

⇡ =
p
�7+7
2 , G = x

2y2 + y2
z

2 + z
2
x

2 and s = 1
2 .

A first new result by the speaker and his coauthors is proving that the
converse Proposition 1.2 holds [3, Theorem 2.8, 2.9].

Theorem 1.4 (Lercier, Liu, Lorenzo García, R.) Let C/K be a smooth
plane quartic. Then C has hyperelliptic reduction if and only if C admits
a good toggle model over K .

Further new results are characterizations for having (non-)hyperelliptic
reduction, based on a set of invariants of the curve, the Dixmier invari-
ants, which we will discuss in the following section.

2 Dixmier invariants and further results

Let’s start by fixing the notation that we will use throughout this section.
Given an n-tuple d = (d1, . . . , dn) 2 Zn+1

>0 , we denote by Pd(K) the
n-dimensional weighted projective space with weights given by the
vector d. Given a point x = (x0, . . . , xn) 2 Pd(K), possibly after a finite
extension of K , we can always find a representative in Pd(O) such that
one of the coordinates has valuation 0; we call such a representative a
minimal representative and denote it x

min. A priori, for a given x, there
are several di�erent minimal representatives, but they all di�er by the
action of a unity, so, component-wise, they have the same valuation
which we call the normalized valuation with respect to x of xi and
denote vx(xi).

In [2] Dixmier found 7 homogeneous polynomial invariants for the
equivalence of ternary quartic forms under the action of SL3(C), which
he called I3, I6, I9, I12, I15, I18 and I27, the indices being the degree of
the polynomials. Moreover, he proved that they form a homogeneous
set of parameters, from now on just HSOP, which means that all the
invariants are equal to 0 for a quartic form in C[x1, x2, x3] if and only
if these 7 are. We call DO the 7-tuple made of these invariants and
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we define DO(F) as the point of the weighted projective space, with
weights given by the indices of the invariants, having as coordinates the
evaluation of the invariants at the given ternary quartic form F, unless
all the invariants are equal to 0, in which case, of course, we do not
get a projective point. Finally, we denote vDO(I•(F)) the normalized
valuation with respect to DO(F).
Naturally, we can generalize this notation to any tuple of polynomial
invariants I of any length, so we can now state the first result [3,
Theorem 3.14]

Theorem 2.1 (Lercier, Liu, Lorenzo García, R.) Let I be a tuple of
invariants, C/K a smooth quartic curve defined by the ternary form
F = 0. If I contains a HSOP over K and k, then C has non-hyperelliptic
reduction if and only if vI (I27(F)) = 0.

Finally the speaker and his coauthors found a new set of explicit in-
variants ◆ in [3, Proposition 4.6] which let us give the final result [3,
Theorem 1.6]

Theorem 2.2 (Lercier, Liu, Lorenzo García, R.) There exist 2 sets
of invariants, DO, ◆ such that a smooth quartic curve C/K defined
by the ternary form F = 0 has hyperelliptic reduction if

• vDO(I3(F)) = 0,

• vDO(I27(F)) = 0,

• v◆(I3(F)
5
I27(F)) = 0.
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1 Introduction

The aim of this talk is to present some recent results bounding the
primes of bad reduction for a CM curve of genus 3. Before looking
at this problem we will look at the analogue for curves of genus 1 and
curves of genus 2 in order to give motivation in a more familiar context.

2 Hilbert class polynomial and good reduction of

CM elliptic curves

If we fix an algebraically closed field k, all elliptic curves over k up
to isomorphism can be parametrized with a single invariant called j-
invariant. For example if the characteristic of k is di�erent from 2 or 3
every elliptic curve E over k has a Weierstrass model

y2 = x
3 + Ax + B
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for certain A, B 2 k such that 4A
3 + 27B

3 , 0 and we can write the
j-invariant of E as

j(E) = �1728
(4A)3
�(E) = �1728

(4A)3
16(4A3 + 27B2)

.

If we consider the endomorphism ring of an elliptic curve E we know
that there are three kinds of possibilities:

1. End(E) � Z, if the only endomorphisms are of the form
[n] : P ! P + · · · + P;

2. End(E) is isomorphic to an order O in an quadratic imaginary
number field; every such order O is of the form Z[

p
D+D

2 ] for
some negative integer D not congruent to 3 (mod 4);

3. End(E) is an order inside a quaternion algebra B; this can only
happen in positive characteristic and if p = char(k) then B is the
only quaternion algebra over Q such that B ⌦ Qv is isomorphic
to Mat2⇥2(Qv) for all rational places in v except from 1 and p;
We will denote it as Bp,1.

In characteristic zero there are two kinds of elliptic curves: ordinary
elliptic curves (case 1) and elliptic curves with complex multiplication

(case 2). Let us now recall some “classical” facts about complex multi-
plication whose proof can be found in the second chapter of [10]. Since
any elliptic curve with CM defined over a field k of characteristic zero
is isomorphic to an elliptic curve defined over the algebraic numbers,
we only need to look at curves defined over Q.

Proposition 1 Let O be an order in a quadratic imaginary field. Then:

1. there exists an elliptic curve E over Q such that End(E) = O;

2. if E over Q is any elliptic curve such that End(E) = O, then the

set n
(E)� : � 2 Gal(Q/Q)

o
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is equal to the set of all elliptic curves E
0

over Q such that

End(E 0) = O, up to isomorphism.

3. if E is an elliptic curve with complex multiplication defined over

a number field L, then E has potential good reduction over any

prime P ⇢ OL; in particular j(E) is an algebraic integer.

The second point of proposition 1 implies that up to isomorphism
there are only finitely many elliptic curves over Q with ring of endo-
morphism a fixed order O, thus we can give the following definition.

Definition 1 Given an order O inside a quadratic imaginary field we

define the modular polynomial relative to O to be

HO(X) =
÷

E: End(E)=O

⇣
X � j(E)

⌘

where the product is taken over the set of elliptic curves E such that

End(E) = O, up to isomorphism.

A motivation for studying and computing modular polynomials is given
by cryptography, since they can be used to construct elliptic curves over
finite fields with a given number of rational points. Proposition 1 im-
plies that HO(X) is an irreducible polynomial with coe�cients in Z.
Let us see how to exploit this, together with some tools from complex
analysis, to compute modular polynomials.

Every elliptic curve E over C is isomorphic as a complex manifold
to a complex torus of the form C/h1, ⌧i for some ⌧ in

H = {⌧ 2 C : Im(⌧) > 0}.

Moreover we can write the j-invariant of E as the value in ⌧ of an
analytic function J : H ! C (not depending on ⌧), i.e.

j(E) = J(⌧) = e
�2⇡i⌧ + 744 + 196884e

2⇡i⌧ + 21493760e
4⇡i⌧ + . . .

Since the function J is e�ectively computable, in order to compute the
modular polynomial relative to an order O we can do the following
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1. Compute ⌧1, . . . , ⌧n 2 H with the following property: every
elliptic curve E over C such that End(E) = O is analytically
isomorphic to C/h1, ⌧ii for a unique i 2 {1, . . . n};

2. Compute an approximation j̃i of J(⌧i) up to su�ciently good
precision (it is enough 2�n�1 maxi{| j(⌧i)|}  2�n�1);

3. Compute the polynomial

H̃(X) =
n÷
i=1

(X � j̃i)

and approximate it with the polynomial H 2 Z[X] whose coe�-
cients are as close as possible to the polynomial H̃.

The polynomial H computed in the third step is equal to the modular
polynomial HO . Indeed if we call c̃k’s and ck’s the coe�cients respec-
tively of H̃(X) and HO(X), then |ck � c̃k | < 1

2 and since the ck’s are
integral, we conclude that

H = HO

.

3 Igusa class polynomial and bad reduction of

genus 2 CM curves

Let us now consider algebraic curves of genus 2 over a field k of
characteristic di�erent from 2 or 3. Any such curve C has an a�ne
model of the form y2 = f (x) where f 2 k[x] is a separable polynomial
of degree 6.

For any polynomial f 2 k[x] of degree 6 we denote ↵1, . . . , ↵6 2 k

the roots of f and we define the following quantities:

� =
÷

1i< j6
(↵i � ↵j)2
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I1 =
’
sym

(↵1 � ↵2)2(↵3 � ↵4)2(↵5 � ↵6)2

I2 =
’
sym

(↵1 � ↵2)2(↵1 � ↵3)2(↵2 � ↵3)2(↵4 � ↵5)2(↵4 � ↵6)2(↵5 � ↵6)2

I3 =
’
sym

�

(↵1 � ↵5)2(↵1 � ↵6)2(↵2 � ↵4)2(↵2 � ↵6)2(↵3 � ↵4)2(↵3 � ↵5)2

I
0
3 = 5I1I2 � 2533

I3

where “
Õ

sym” means that we sum over all the permutations of↵1, . . . , ↵6.
Given a curve C : y2 = f (x) the Igusa invariants of C are defined in
[4] as

j1 =
I2I

0
3

210 · 35 · 5 · �
, j2 =

I1I
2
2

28 · 35 · �
j3 =

I
5
2

215 · 310 · �2 .

Analogously to what happens for elliptic curves and the j-invariant,
two genus 2 curves C1 : y2 = f1(x) and C2 : y2 = f2(x) are isomorphic
over k if and only if they have the same Igusa invariants. Moreover if k

happens to be a number field and p is a prime of k, then a curve C has
potential good reduction modulo p if and only if all Igusa invariants of
C are p-integral.

Another analogy with the j-invariant of elliptic curves is that we
can compute the Igusa invariants of a genus 2 curves in terms of a
holomorphic function on a complex moduli space. Indeed if we define

H2 =
n
⌧ 2 M

2⇥2(C) : ⌧ = ⌧t, Im(⌧) is positive definite
o

then for each genus 2 curve C over the complex numbers, there is a
⌧ =

⇣
⌧1 |⌧2

⌘
2 H2 such that Jac(C) � C2/he1, e2, ⌧1, ⌧2i as principally

polarized Abelian variety. Moreover there are holomorphic functions
J1, J2, J3 : H2 ! C such that ji(C) = Ji(⌧).

As in the case of elliptic curves we can define a class polynomial for
genus 2 curves. Let us give some preliminary definition.
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Definition 2 A number field K is a CM-field if it is a totally imaginary

quadratic extension of a totally real field K
+

Definition 3 A curve C of genus g defined over Q is a CM curve if

there exists a CM-field K of degree 2g and an order O ⇢ K such that

O ⇢ End
⇣
Jac(C)

⌘
.

In this case we say that C has complex multiplication by O.

Given a fixed order O inside a quartic CM-field K there are only
finitely many curves of genus 2 over Q having complex multiplication
by O up to isomorphism. We can then define three Class polynomials

H
1
O,H

2
O,H

3
O with the following formulas

H
i
O(X) =

÷
End

�
Jac(C)

�
� O

g(C) = 2

⇣
X � ji(C)

⌘
.

It is easy to show that Class polynomials Gal(Q/Q)-invariant, i.e.
that they have coe�cients inQ: indeed if C is a genus 2 curve with CM
by O, then for any � 2 Gal(Q/Q) the curve C

� is also a genus 2 curve
with CM by O; thus if ji is a root of H

i
O then each Galois-conjugate of

ji is also a root of H
i
O .

Unfortunately it is not true that a CM curve C has potential good re-
duction everywhere, i.e. that the invariants ji(C) are algebraic integers.
Indeed the Class polynomials H

i
O may have non-integral coe�cient.

Anyway if we had a bound B for the denominators of the coe�cients
of H

i
O we could compute H

i
O with an algorithm similar to the one for

elliptic curves, since all the other ingredients are still available. Such
bounds have been given by Goren, Lauter and Viray, by bounding the
denominators of the Igusa invariants of the curves involved. Indeed in
[2] it is proved the following
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Theorem 1 Let C be a genus 2 curve with complex multiplication by

an order O inside a a quartic CM-field K not containing any quadratic

imaginary subfield. Then we can write

K = Q(
p

d)(
p

r)

for some d 2 Z and some r 2 Q(
p

d) \ O both totally real. If C has

geometrical bad reduction for a prime lying over p, then

p < 16d
2(Tr(r))2.

To finish the work one also needs to bound the valuation of the Igusa
invariants in the primes of bad reduction. This has been done for
example in [3] achieving the following bounds for the denominators of
the Class polynomials relative to some maximal orders OK .

Theorem 2 Let K be a quartic CM-field not containing any quadratic

imaginary subfield and let p ne any prime. In particular we can write

K = Q(
p

d)(
p

r)

for some d 2 Z and some r 2 Q(
p

d) \ O both totally real. Then the

valuations at p of the coe�cients of H
1
OK
,H2

OK
,HOK are at least

�16 deg H
1
OK

⇣
4 logp

✓
d Tr(r)2

2

◆
+ 1

⌘

Instead of explaining the strategy used to prove the last two theorems
we will now look at analogous results for genus 3 curves and at the
ideas used to prove those.

4 Bad reduction of genus 3 CM curves and the

embedding problem

The definition of CM curves in genus 3 is just a particular case of
definition 3, but there are some substantial di�erences with the case of
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genus 2 curves, indicating that finding such bounds is a necessary but
not su�cient step, if we want to compute class polynomials in genus
3. One of the missing ingredients is the analogue of Igusa invariants,
since we do not know good coordinates for the moduli space of curves
of genus 3. Indeed we can distinguish between two kinds of genus 3
curves, each one with its own invariants:

• hyperelliptic genus 3 curves: in characteristic di�erent from 2
they all have a model y2 = f (x) for a separable polynomial f of
degree 8; Shioda defined invariants in [9] for this kind of curves.

• non-hyperelliptic genus 3 curves: they are all isomorphic to a
smooth projective plane quartic; invariants for this family of
curves where defined by Dixmier and Ohno in [1] and [8].

Another di�erence is that in general integrality of the invariants of a
genus 3 curve is not equivalent to potential good reduction of the curve.
This is true for hyperelliptic curves, but not in general for smooth plane
quartics. For example it may happen that C is a CM non-hyperelliptic
curve of genus 3 that has potential good reduction of C modulo some
prime p but that the reduction of the curve is hyperelliptic; in this case
one of the invariants is not p-integral.

In the rest of this section we will see some partial results that give
bounds on the bad reduction of CM curves of genus 3. To state precisely
our results we need to define a notion of “primitivity”.

Definition 4 Let ⇢ be usual conjugation on C. A CM-type is a pair

(K, �) such that K is a CM-field and � is a set of embeddings K ,! C
such that

Hom(K,C) = � [ ⇢�, and � \ ⇢� = ;

Definition 5 A CM-type (K, �) is primitive if there is no proper subfield

E ⇢ K such that (E, �|E ) is a CM-type.

In [7] it is explained how one can define the CM-type associated to
a CM Abelian variety A/C. We say that a CM curve has primitive
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CM-type if the CM-type associated to its Jacobian is primitive.

Let us now return to our main problem. Let C be a semistable CM
curve of genus 3 with Jacobian J and let p be a prime of bad reduction
for p. One of the ideas in [2] was to look at the reduction of J modulo
p: by a theorem of Serre and Tate it is still an Abelian variety and
the hypothesis on p implies that it is isogenous to the third power of
a supersingular elliptic curve. If we reduce the endomorphisms of J

modulo p, we step into the following, purely algebraic problem.

Problem 1 (Embedding problem for O and p) Given an order O in-

side a CM sextic field and a prime p does there exist an embedding

◆ : O ,! Mat3⇥3(Bp,1) ?

The precise relation between the embedding problem and our original
problem is in the following proposition proved in [5].

Proposition 2 Let C be a curve a genus 3 with CM by an order O and

primitive CM type. Suppose that C has geometric bad reduction over

a prime lying over p. Then we can find ↵, � 2 Z, � 2 Bp,1 and an

embedding ◆ : O ,! Mat3⇥3(Bp,1) such that

↵� , ��_ and

◆(⌘) = ©≠
´
1 0 0
0 ↵ �
0 �_ �

™Æ
¨

�1

·
�
◆(⌘)_

� t · ©≠
´
1 0 0
0 ↵ �
0 �_ �

™Æ
¨

where
_ : Bp,1 ! Bp,1 is the canonical involution.

In [5] it is proven that the (complicated version of the) embedding
problem has no solution for large p, implying the following

Theorem 3 with CM by an order O and primitive CM type. Suppose

that C has bas reduction over a prime lying over p. Then for every

µ 2 O with µ2
totally real and K = Q(µ), we have

p <
1

213
�
TrK/Q(µ)

�10
.
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Let us now turn to the problem of bounding from below the valuation
vp( j) when j is the invariant of a curve having CM by a particular
order O and p is a prime. For curves of genus 2 this was obtained
in [6] by relating this valuation to the number of solutions of the
embedding problem. At the moment there are no similar formulas for
genus 3 curves, while bounding the number of possible embeddings
is the aim of an ongoing project by Garcia, Ionica, Kiliçer, Lauter,
Massierer, Mânz��enau and Vincent. One of the results of this work
is a bound on the number of the embeddings and an algorithm that
computes all of them. This has been achieved in a very explicit way:
if we fix µ 2 O that generates the sextic CM field and that satisfies a
relation µ6 + Aµ4 + Bµ2 +C = 0 over the integers, then finding all the
embeddings is equivalent to solving the following system of equations
in ↵, �, �, d, x 2 Bp,1 and n 2 Z>0:

A =N(x) + Tr(↵) + Tr(�)/↵ + Tr(�d)/(↵n) + N(d/n),
B =↵2 + 2n/↵ + 2n N(x)/↵2 + 2↵N(d/n) + 2 N(b)/↵ + Tr(x�)+

2 Tr(d�/n) + n Tr(d�/n)/↵3 + N(x)N(d/n) + N(x)Tr(d�/n)/↵+�
N(d/n) + 2 N(x)

�
N(�)/↵2 + N(�)Tr(d�/n)/↵3 + N(�)/↵2,

C =N
⇣
� x�/↵ � x�d/(↵n) � ↵d/n + �

⌘
.

For example if K = Q[t]/(t6 + 13t
4 + 50t

2 + 49) then there is only one
curve of genus 3 and CM by OK (indeed K has class number 1), i.e.

C : y2 = x
7 + 1786x

5 + 44441x
3 + 278179x

with � = 218 · 724 · 1112 · 197. Actually only 7 and 11 are primes
of geometric bad reduction: for p = 7 there are two solutions to the
embedding problem, for p = 11 there is only one.
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Let G be a finite group and suppose we want to find a field extension
which has G as its Galois group. One approach would be to embed G
into the symmetric Sn for some some natural number n. Let the group
Sn act on the field Q(X1, . . . , Xn) by permuting the indeterminates
Xi. Then the field extensionQ(X1, . . . , Xn)/Q(X1, . . . , Xn)G has Galois
group G.

However, we would like to find an extension of Q with Galois group
G. If Q(X1, . . . , Xn)G is purely transcedental over Q, then we can use
Hilbert’s irreducibility theorem to find extensions of Q with Galois
group G. In the case where G is the symmetric group Sn or the
alternating group An, this approach indeed works.

This leads to Noether’s problem for G overQ: for which finite groups
G is Q(X1, . . . , Xn)G/Q purely transcedental? A natural place to start
is by looking at the cylic group Cn. Let P be the set of all primes p
such thatQ(X1, . . . , Xn)G/Q purely transcedental for G = Cp. The first
few small primes are all in P, but in 1969 Richard Swan showed that
47 is not. In fact, in 1974, Hendrik Lenstra showed that the density
of P in the set of all primes is equal to 0 [3]. He also showed that
p is in P if and only if the field Q(⇣p�1) contains an element with
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norm p. Here ⇣n is a primitive n’th root of unity. The prime p splits
completely in the extension Q(⇣p�1)/Q, i.e. pZ[⇣p�1] = p1 . . .pr ,
where r = [Q(⇣p�1 : Q] = �(p � 1). Hence the question becomes: For
which p are these ideals p principal?

Example 1 If p = 5, then Q(⇣p�1) = Q(i) and 5 = (2 + i)(2 � i), so 5
splits into principal ideals. If p = 47, then Q(⇣p�1) = Q(⇣23), which

contains Q(
p
�23) as a subfield. We can use binary quadratic forms to

show that the ideals of Q(
p
�23) above 47 are not principal. Note that

2x2 + xy + 3y2
is not a principal binary quadratic form, but by taking

(x, y) = (4,�3) we see that it represents 47. So the ideals above 47 are

not principal in Q(
p
�23) and therefore also not in Q(⇣23).

The complete answer to the question was recently given by Bernat
Plans [4].

Theorem 1 (Plans) An ideal p of Q(⇣p�1) above p is principal if and

only if Q(⇣p�1) has class number one, so if and only if

p 2 {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 61, 67, 71}.

In the rest of this text we shall have a look at the proof of this theorem.
Of course ifQ(⇣p�1) has class number one, then all ideals are principal,
so in particular p. For the other direction we need to introduce heights.

Let K be a number field and let ↵ 2 K⇤. We normalize the valuations
of K as follows. If v is a finite prime corresponding then |↵ |v = q�v(↵)

where q is the number of elements in the residue field. If v corresponds
to a real embedding i : K ! R then |↵ |v = |i(↵)|R. If v corresponds to
a complex embedding i : K ! C then |↵ |v = |i(↵)|2C. In this way the
product formula

Œ
v |↵ |v = 1 holds.

Define the height h(↵) of ↵ as

h(↵) := log
÷
v

max(1, |↵ |v).
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Here the product is over all valuations of K . For example in Q we see
h( ab ) = log(max(|a|, |b|)) if a and b are relatively prime. If L/K is
finite field extension then hL(↵) = [L : K]hK (↵). Hence h(↵) depends
on the field K , but the absolute height h(↵)/[K : Q] only depends on
↵.

Some basic properties of h are that we always have h(↵) � 0 and we
have h(↵) = 0 if and only if ↵ is a root of unity. Lehmer’s conjecture
says that there is a positive constant which bounds the absolute height
from below. In general this is a conjecture, but for cyclotomic fields we
have the following result [1]:

Theorem 2 (Amoroso-Dvornicich) For ↵ 2 Q(⇣n) not a root of unity

and for all primes q we have

h(↵)
�(n) >

log(q/2)
2q

.

If q - n then

h(↵)
�(n) >

log(q/2)
q + 1

.

We obtain the best lower bound using q = 5, which gives h(↵)
�(n) > 0.09.

We will now show how Theorem 1 follows from the result of Amoroso
and Dvornicich.

(Sketch of proof of Theorem 1).Suppose that p splits into principal
ideals in Q(⇣p�1), so pZ[⇣p�1] = (⇡1) . . . (⇡�(p�1)). Let ⇡ = ⇡1 and
consider the element ⇡

⇡ . Here ⇡ is the complex conjugate of ⇡. Since
| ⇡⇡ |v = 1 for the archimedean valuations, we find that h( ⇡⇡ ) = log p.

Because p splits completely, (⇡) and (⇡) must be di�erent ideals
and thus ⇡

⇡ is not a unit. In particular it is not a root of unity, so by
Amoroso-Dvornicich we see

log p
�(p � 1) > 0.09
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Since �(n) grows faster than log n, this leaves us with a finite list of
possible primes. For these primes we can use the second bound of
Theorem 2, after which we are left with the primes 47, 53, 73 and
79. In the original, Plans got rid of the exceptions by using computer
calculations done by Hoshi [2]. Alternatively these cases can be done
by hand. In the example above we used binary quadratic forms to show
47 does not split into principal ideals in Q(

p
�23). The case p = 53

can be done in similar fashion. The final two cases can be done by
considering suitable subfields of Q(⇣72) and Q(⇣39) and using class
field theory.

⇤

Finally we will give an idea of how the prove the theorem by Amoroso
and Dvornicich. We need the following lemma, which basically follows
from the product formula.

Lemma 1 Let F be a number field, x, y 2 F⇤
with x , y and let q be

a prime integer. If for any valuation v |q we have

|x � y |v  |q |v max(1, |x |v)max(1, |y |v)

then
h(x) + h(y)
[F : Q] � log(q

2
).

In the case where q - n, we apply this lemma to x = ↵q and y = �(↵)
where � is the Frobenius automorphism corresponding to q. Since
h(↵q) = qh(↵) and h(�(↵)) = h(↵), the theorem follows immediately
after we show that ↵q and �(↵) satisfy the conditions of the lemma.

Let v |q be a valuation. By the strong approximation theorem we can
find an algebraic integer � such that↵� is an algebraic integer and |�|v =
max(1, |↵ |v)�1. Then |�(�)� �q |v  |q |v and |�(↵�)� (↵�)q |v  |q |v
because � is the Frobenius automorphism. This leads to the desired
inequality:
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|↵q � �(↵)|v = |�|�qv |(↵�)q � �(↵�) + (�� � �q)�(↵)|v
 |�|�qv max(|(↵�)q � �(↵�)|v, |�(�) � �q |v |�(↵)|v)
 |q |v max(1, |↵q |v)max(1, |�(↵)|v)

In the case where q divides n, there no longer exists a Frobenius
automorphism corresponding to q, so we need to pick di�erent x and
y. Let � be a generator of the cyclic group Gal(Q(⇣n)/Q(⇣ nq )). Then �
fixes ⇣qn and thus �(↵)q ⌘ ↵q mod q. Hence we choose x = ↵q and
y = �(↵)q. A similar argument as before shows that the conditions of
the lemma are satisfied and the theorem follows immediately.
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This is a report of the results obtained in a joint work by Amir
Akbary and Alia Hamieh. The study on the distribution of values of
L-functions associated with quadratic Dirichlet characters in the half
plane <(s) > 1

2 has been investigated by several authors. One of the
early results is obtained by Chowla and Erd�s in 1953. Let d be an
integer such that d is not a perfect square and d ⌘ 0, 1 (mod 4). Suppose
that, for <(s) > 0, we have

Ld(s) =
1’
n=1

⇣
d
n

⌘
ns
.

Here the quadratic Dirichlet character of the function Ld(s) is de-
termined by the Kronecker symbol

⇣
d
.

⌘
. The distribution of values of

Ld(s) in the half-line � > 3
4 for varying d has been described by the

authors in [1] as the following theorem.

Theorem 1 (Chowla-Erd�s) If � > 3/4, we have

lim
x!1

#{0 < d  x; d ⌘ 0, 1 (mod 4) and Ld(�)}  z}
x/2 = G(z),
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where G(0) = 0,G(1) = 1 and G(z) is the distribution function, which
is a continuous and strictly increasing function of z.

In 1970 Elliott reconsidered this problem for � = 1 and extended
Chowla-Erd�s theorem. The following is proved in [2].

Theorem 2 (Elliott) There is a distribution function F(z) such that

#{0 < �d  x; d ⌘ 0, 1 (mod 4) and Ld(1)  z}
x/2 = F(z)+O

 s
log log x

log x

!

holds uniformly for all real z, and real x � 9. F(z) has a probabil-
ity density, may be di�erentiated any number of times, and has the
characteristic function

'F (y) =
÷
p

 
1
p
+

1
2

✓
1 � 1

p

◆ ✓
1 � 1

p

◆�iy
+

1
2

✓
1 � 1

p

◆ ✓
1 +

1
p

◆�iy!

which belongs to the Lebesgue class L
1(�1,1).

This theorem provides detailed information on the distribution func-
tion in Chowla-Erd�s theorem for � = 1 with an explicit error term.
In 1970 Elliott explored similar expressions for several other functions
(see [3, 4, 5]).

In 2015, Mourtada and Murty [6] described the density function M�

for the values of the logarithmic derivative of Ld(s) for � > 1
2 in the

following theorem.

Theorem 3 (Mourtada-Murty) Let � > 1
2 and assume the GRH (the

Generalized Riemann Hypothesis for Ld(s)). Let F (Y ) denote the
set of the fundamental discriminants in the interval [�Y,Y ] and let
N(Y ) = #F (Y ). Then, there exists a probability density function M� ,
such that

lim
Y!1

1
N(Y )#{d 2 F (Y ); (L0

d/Ld)(�)  z} =
π z

�1
M�(t)dt.
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Moreover, the characteristic function 'F� (y) of the asymptotic distri-
bution function F�(z) =

Ø z

�1 M�(t)dt is given by

'F� (y) =
÷
p

✓
1

p + 1
+

p

2(p + 1) exp
✓
� iy log p

p� � 1

◆
+

p

2(p + 1) exp
✓
iy log p

p� + 1

◆◆
.

Here Amir Akbary and Alia Hamieh note that it is possible to remove
the GRH assumption in Theorem 3 by applying an appropriate zero
density theorem for L-functions of quadratic Dirichlet characters. They
describe their approach for certain cubic L-functions.

Notice that if d is a fundamental discriminant then

Ld(s) =
⇣Q(

p
d)(s)
⇣(s) , (1)

where ⇣Q(pd)(s) is the Dedekind zeta function of Q(
p

d) and ⇣(s) is the
Riemann zeta function. For k = Q(

p
�3), letOk = Z[⇣3] be the ring of

integers of k, where ⇣3 = e
2⇡ i

3 . Let

C := {c 2 Ok ; c , 1is square free and c ⌘ 1 (mod h9i)}.

Similar to (1), we can define

Lc(s) =
⇣k(c1/3)(s)
⇣k(s)

, (2)

where ⇣k(c1/3)(s) is the Dedekind zeta function of the cubic field k(c1/3)
for c 2 C.

We set

Lc(s) =
(

log Lc(s) (Case 1),
(L0

c/Lc)(s) (Case 2).

The following was the main result of this talk.
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Theorem 4 (Akbary-Hamieh) Let � > 1
2 . Let N(Y ) be the the num-

ber of elements c 2 C with norm not exceedingY . There exists a smooth
density function M� such that

lim
Y!1

1
N(Y )#{c 2 C : N(c)  Yand Lc(�)  z} =

π z

�1
M�(t)dt .

The asymptotic distribution function F�(z) =
Ø z

�1 M�(t)dt can be con-
structed as an infinite convolution over prime ideals p of k,

F�(z) = ⇤pF�,p(z),

where

F�,p(z) =
8>><
>>:

1
N(p) + 1

� + 1
3

✓
N(p)

N(p) + 1

◆ Õ2
j=0 ��ap, j (z) if p - h3i,

�ap,0(z) if p - h1 � ⇣3i.

Here �a := �(z � a), � is the Dirac distribution, and

ap, j := ap, j(�) =

8>>>><
>>>>:

2<
⇣
log(1 � ⇣ j3 N(p)��

⌘
in (Case 1),

2<
 
⇣ j3 log(N(p))
N(p)� � ⇣ j3

!
in (Case 2).

Moreover, the density function M� can be constructed as the inverse
Fourier transform of the characteristic function 'F� (y), which in (Case
1) is given by

'F� (y) = exp(�2yi log(1 � 3��))
÷
p-h3i

©≠
´

1
N(p) + 1

+
1
3

N(p)
N(p) + 1

2’
j=0

exp

 
�2yi log

�����1 �
⇣ j3

N(p)�

�����
!!
,
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and in (Case 2) is given by

'Fs (y) = exp
✓
�2yi< log(3)

3� � 1

◆ ÷
p-h3i

©≠
´

1
N(p) + 1

+
1
3

N(p)
N(p) + 1

2’
j=0

exp

 
� 2yi

·<
 
⇣ j3 log(N(p))
N(p)� � ⇣ j3

!!!
.

As an application of the above theorem note that according to the
class number formula

Lc(1) =
(2⇡)2

p
3hcRcp

|Dc |
The value Lc(1) has some arithmetic significance. Here, hc, Rc and

Dc = (�3)5(N(c))2 are respectively the class number, the regulator,
and the discriminant of the cubic extension Kc = k(c1/3) (see [7], page
427] for more explanation). On the other hand by the Brauer-Siegel
theorem we have log(hcRc) s log |Dc |1/2, whenever N(c) ! 1 (Note
that the number fields Kc all have a fixed degree (namely 6) over Q).

Corollary 5 Let E(c) = log(hcRc) � log |D |1/2. Then

lim
Y!1

1
N(Y )#{c 2 C : N(c)  Yand E(c)  z} =

π z+log(4
p

3⇡2)

�1
M1(t)dt,

where M1(t) is the smooth function described in Theorem 4 (Case 1)
for � = 1.

As another application note that the Euler-Kronecker constant of a
number field K is defined by the relation

�K = lim
s!1

 
⇣
0
K (s)
⇣K
+

1
s � 1

!
.

From (2) We concluded that
L

0
c(1)

Lc(1)
= �Kc � �k . Thus, we get the

following corollary of Theorem 4 (Case 2), since �k is fixed.
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Corollary 6 There exists a smooth function M1(t) (as described in
Theorem 4 (Case 2) for � = 1) such that

lim
Y!1

1
N(Y )#{c 2 C : N(c)  Yand �Kc  z} =

π z��k

�1
M1(t)dt.
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The talk is based on joint work with Tyler Kelly, Charles Doran,
Steven Sperber, Ursula Whitcher and John Voight.

1 Motivation : quartics

Everything starts with an observation. Consider the five following
quartics in P3 :

Family Equation
F4 (Fermat/Dwork) x

4
0 + x

4
1 + x

4
2 + x

4
3

F2L2 x
4
0 + x

4
1 + x

3
2 x3 + x

3
3 x2

F1L3 (Klein-Mukai) x
4
0 + x

3
1 x2 + x

3
2 x3 + x

3
3 x1

L2L2 x
3
0 x1 + x

3
1 x0 + x

3
2 x3 + x

3
3 x2

L4 x
3
0 x1 + x

3
1 x2 + x

3
2 x3 + x

3
3 x0

These quartics are not isomorphic : they have very di�erent geome-
try. Let’s have a look at the points where they vanish over finite fields.
We count experimentally the number #X(Fp) of Fp-rational points of
each quartic for several primes p.
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p F4 F2L2 F1L3 L2L2 L4
5 0 20 30 80 40
7 64 50 64 64 78
11 144 122 144 144 254
13 128 180 206 336 232
17 600 328 294 600 328
19 400 362 400 400 438
23 576 530 576 576 622
29 768 884 1116 1232 1000
31 1024 962 1024 1024 1334
37 1152 1300 1374 1744 1448

We remark that, for a fixed prime number p, all the values of the
corresponding rows are equal (mod p).

To have a better idea of the phenomenon, we can consider pencils
of quartics, adding to each equation a deforming term �4 x0x1x2x3.
We can then count points over Fp on the pencil X⇧, of the family ⇧ for
0 6  < p. We observe that, for a given p and for each parameter  ,
the point counts on X⇧, agree (mod p).

This equality holds for every p : these five quartics have di�erent
equations, di�erent geometry but there is, arithmetically, something
consistant.

2 Zeta functions

The number of rational points of an algebraic variety X/Fq over the
finite fields with q = p

s elements can be measured by looking at its
Zeta function. We define the Zeta function of X as the formal power
series:

Z(X/Fq,T) = exp

 1’
s=1

Ns(X)T
s

s

!
2 QJTK,
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where Ns(X) := #X(Fqs ) denotes the number of Fqs -rational points on
X .

The Weil conjectures, proven by Dwork and Deligne, state that the
Zeta function of an algebraic variety X is indeed a rational function. If
we denote by n the dimension of X , we can factorize Z(X/Fq,T) using
polynomials with integer coe�cients :

Z(X/Fp,T) =
Œn

j=1 P2j�1(T)Œn
j=0 P2j(T)

,

where P0(T) = 1 � T , P2n(T) = 1 � p
n
T and degPj(T) = bj =

dimH
j
dR(X) for all 1 6 j 6 2n � 1.

In the particular case of smooth projective hypersurfaces in Pn, it
takes the following form :

Z(X,T) = PX(T)(�1)n

(1 � T)(1 � qT) . . . (1 � qn�1T), PX(T) 2 Q[T],

which gives for smooth quartics :

Z(X/Fp,T) =
PX(T)�1

(1 � T)(1 � pT)(1 � p2T) .

Thus, the Zeta function of a smooth quartic is totally determinated
by its numerator PX(T).

According to the definition of Z(X/Fp,T) and to the first observations
that we made on the numbers of Fp-rational points, we can expect the
numerators PX(T) of the Zeta functions to have some common divisors
in our previous examples. Using Edgar Costa’s code, we compute the
polynomial PX⇧, (T) for p = 41 and 0 6  6 40 : we can observe
shared quadratic factors, which are in fact parts of shared cubic factors,
and we can predict the sructure of the other factors. The array below
gives the obtained polynomials for some values of the parameters  
and ⇧.
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 ⇧ PX⇧, (T)

0
F4 (1 � 41T)19(1 � 18T + 412

T
2)

F2L2 (1 � 41T)11(1 + 41T)8(1 � 18T + 412
T

2)
L2L2 (1 � 41T)19(1 � 18T + 412

T
2)

2, 18, 23, 39
F4 (1 � 41T)3(1 + 41T)16(1 � 50T + 412

T
2)

F2L2 (1 � 41T)11(1 + 41T)8(1 � 50T + 412
T

2)
L2L2 (1 � 41T)11(1 + 41T)8(1 � 50T + 412

T
2)

3, 14, 27, 38
F4 (1 � 41T)19(1 + 78T + 412

T
2)

F2L2 (1 � 41T)19(1 + 78T + 412
T

2)
L2L2 (1 � 41T)15(1 + 41T)4(1 + 78T + 412

T
2)

3 Mirror symmetry

The five quartics that we take as examples are Calabi-Yau manifold.
These structures are essential for physicists. Indeed, in string theory the
results need to be transposed from a space in high dimension (where
the superstrings are defined) to a realistic 4-dimension space. The
remaining dimensions are "hidden" in a Calabi-Yau manifold.

For the string theory to work, they need two Calabi-Yau manifolds
giving the same observable physics ; in this model to describe the
universe, Calabi-Yau manifolds appear in pairs. This way of coupling
manifolds is called Mirror symmetry.

The arithmetic patterns that we observe are a consequence of mirror
symmetry.

3.1 Invertible polynomials

We need a construction of the swapping of properties in the "duality"
induced by mirror symmetry. It can be done associating to each Calabi-
Yau manifold a certain matrix.
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We call invertible polynomial any polynomial of the form

FA =

n’
i=0

n÷
j=0

x
ai j
j 2 Z[x0, . . . , xn],

where the matrix of exponents A = (ai j)i, j is an (n+ 1)⇥ (n+ 1) matrix
with nonnegative integer entries such that :

• A is invertible,

• FA is quasi-homogeneous : there exist r0, . . . , rn 2 N and d 2 Z
such that

Õn
j=0 rjai j = d,

• the function FA : Cn+1 ! C has exactly one singular point at the
origin.

An invertible polynomial defines a hypersurface XA in the weighted
projective space WPn(r0, . . . , rn). When FA is invertible and homoge-
neous of degree d = n + 1, this hypersurface is a Calabi-Yau manifold.

If FA is an invertible polynomial, so is FAT , where A
T is the transpose

matrix of A. There exist nonnegative integral weights q0, . . . , qn so that
gcd(q0, . . . , qn) = 1 and FAT = 0 defines a hypersurface XAT in the
weighted-projective space WPn(q0, . . . , qn). The integers q0, . . . , qn
are called dual weights of FA. We denote by d

T =
Õ

i qi their sum.

| Equation A Dual weight d
T

C2F2 x
3
0 x1 + x

4
1 + x

4
2 + x

4
3

✓3 1 0 0
0 4 0 0
0 0 4 0
0 0 0 4

◆
(4, 2, 3, 3) 12

C2L2 x
3
0 x1 + x

4
1 + x

3
2 x3 + x

3
3 x2

✓3 1 0 0
0 4 0 0
0 0 3 1
0 0 1 3

◆
(4, 2, 3, 3) 12
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⇧ Equation A Dual weight d
T

F4 x
4
0 + x

4
1 + x

4
2 + x

4
3

✓4 0 0 0
0 4 0 0
0 0 4 0
0 0 0 4

◆
(1, 1, 1, 1) 4

F2L2 x
4
0 + x

4
1 + x

3
2 x3 + x

3
3 x2

✓4 0 0 0
0 4 0 0
0 0 3 1
0 0 1 3

◆
(1, 1, 1, 1) 4

F1L3 x
4
0 + x

3
1 x2 + x

3
2 x3 + x

3
3 x1

✓4 0 0 0
0 3 1 0
0 0 3 1
0 1 0 3

◆
(1, 1, 1, 1) 4

L2L2 x
3
0 x1 + x

3
1 x0 + x

3
2 x3 + x

3
3 x2

✓3 1 0 0
1 3 0 0
0 0 3 1
0 0 1 3

◆
(1, 1, 1, 1) 4

L4 x
3
0 x1 + x

3
1 x2 + x

3
2 x3 + x

3
3 x0

✓3 1 0 0
0 3 1 0
0 0 3 1
1 0 0 3

◆
(1, 1, 1, 1) 4

All that will follow can be extended to the pencil of hypersurfaces
described by FA � d

T x0 . . . xn = 0.

3.2 Group action

The torus (C⇤)n acts coordinate-wise on Pn, and therefore it acts on
every Calabi-Yau manifold XA given by an invertible polynomial FA.
Let fix notations for four remarkable groups :

• SL(FA), the subgroup of the torus that acts symplectically on XA

(fixes the holomorphic n � 1-form),

• JFA , the subgroup of SL(FA) that acts trivially on XA,

• G = SL(FA)/JFA ,

• ZA,G = XA/G.

3.3 Berglund-Hubsch-Krawitz mirror symmetry

Mirror symmetry depends on the transpose of the matrix A and on
the group action. We start with a manifold XA, corresponding to a
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matrix A. Consider the transpose polynomial FAT . We saw that XAT

is a Calabi-Yau manifold ; denote by G
T the quotient SL(FAT )/J(FAT )

defined by the action of the torus (C⇤)n on XA. We obtain a dual
orbifold ZAT ,GT = XAT /G

T , called Berglund-Hubsch-Krawitz (BHK)
mirror of the orbifold ZA,G .

BHK duality is a true duality: the mirror of the mirror yields the
original orbifold.

4 Arithmetic applications of BHK mirror

symmetry

We saw that the BHK mirror symmetry gives a duality relation between
orbifolds. This duality has arithmetic consequences, in particular on
Zeta functions of Calabi-Yau manifolds.

Let’s recall that our smooth quartics have a Zeta function of the form

Z(X/Fp,T) =
PX(T)�1

(1 � T)(1 � pT)(1 � p2T) .

From our observations, we expect the polynomials PXA, (T) and PXB, (T)
of two di�erent pencils of the ⇧-family to share a common factor. The
following theorem confirms this prediction and gives lower and upper
bounds of the degree of this common factor.

Theorem. (DKSSVW) Let XA, and XB, be invertible pencils of
Calabi-Yau (n � 1)-folds in Pn. Suppose A and B have the same dual
weights (q0, . . . , qn). Then for each 2 Fq such that gcd(q, (n+1)dT ) =
1 and the fibers XA, and XB, are nondegenerate and smooth, the
polynomials PXA, (T) and PXB, (T) have a common factor R (T) 2
Q[T] with

degR (T) > D(q0, . . . , qn).
Furthermore, degR (T) 6 dimCH

n�1
prim(XA, ,C)SL(FA).
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⇧ Equation SL(FA)/JFA

F4 x
4
0 + x

4
1 + x

4
2 + x

4
3 � 4 x0x1x2x3 (Z/4Z)2

F2L2 x
4
0 + x

4
1 + x

3
2 x3 + x

3
3 x2 � 4 x0x1x2x3 Z/8Z

F1L3 x
4
0 + x

3
1 x2 + x

3
2 x3 + x

3
3 x1 � 4 x0x1x2x3 Z/7Z

L2L2 x
3
0 x1 + x

3
1 x0 + x

3
2 x3 + x

3
3 x2 � 4 x0x1x2x3 Z/4Z ⇥ Z/2Z

L4 x
3
0 x1 + x

3
1 x2 + x

3
2 x3 + x

3
3 x0 � 4 x0x1x2x3 Z/5Z

| Equation SL(FA)/JFA

C2F2 x
3
0 x1 + x

4
1 + x

4
2 + x

4
3 � 12 x0x1x2x3 Z/4Z

C2L2 x
3
0 x1 + x

4
1 + x

3
2 x3 + x

3
3 x2 � 12 x0x1x2x3 Z/2Z

The five first pencils of quartics have the same dual weights (1, 1, 1, 1).
Their polynomials PX, have a common factor R (T) of degree 3 ac-
cording the theorem. The two pencils of the |-family have dual weights
(4, 2, 3, 3). They also have a common factor, but in this case, we cannot
determine its degree : the theorem juts says that 6 6 degR (T) 6 7.

From now, for any invertible pencil of Calabi-Yau (n�1)-folds in Pn,
we can write

PX, (T) = QX, (T)R (T),
where R (T) uniquely depends on the family of pencils. Next step in
the understanding of Zeta functions is to determine QX, (T). Finally,
using hypergeometric motives, we can show :

Theorem. (DKSSVW) The polynomials Q⇧, ,q(T) factor over Z[T]
according to the following table :

Family Factorisation Hypothesis r0
F4 (deg 2)3(deg 1)12

q ⌘ 1(mod 4) 2
F1L3 (deg 6)3 q ⌘ ±1(mod 7) 18
F2L2 (deg 2)1(deg 1)2(deg 2)4(deg 1)6 q ⌘ 1(mod 8) 16
L2L2 (deg 2)1(deg 4)2(deg 2)4 q ⌘ 1(mod 4) 20

L4 (deg 4)4(deg 1)2 q ⌘ 1(mod 5) 4
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Moreover, if q = p
r with r0 |r then Q⇧, ,q(T) = (1 � qT)18.
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1 Introduction

Surely the most famous explicit formula in analytic number theory is

the one for the second Chebyshev function, which was proposed by

Riemann in his memoir and proved in 1895 by von Mangoldt:

 (x) = x �
’
⇢

x
⇢

⇢
� ⇣ 0

⇣
(0) � 1

2
log

✓
1 � 1

x2

◆
.

Since then, several explicit formulae were proved for di�erent arith-

metic functions or their means. Hence, one may wish to know if a

similar formula exists for the function that counts the number of points

with prime coordinates in a triangle, that is

]{(p, p0) : p + p
0  N, p and p

0
prime} =

’
nN

’
p, p0 prime

p+p0=n

1.

As it is clear by the last way of writing it, this quantity can be interpreted

also as the mean of the number of representations of the integers n  N

as the sum of two primes (the Goldbach representations). As customary,
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in order to apply analytic methods, instead of counting just primes one

is led to consider the sum extended to all the integers weighted with the

von Mangoldt function, so obtaining

G0(N) :=
’0

nN
R(n), where R(n) :=

’
m+m0=n

⇤(m)⇤(m0).

The notation means that, if N 2 N, R(N)/2 must be subtracted from

the first sum. By the classical results on the Goldbach problem, it is

expected that R(n) ⇠ nS(n), where S(n) is the well known singular

series; since this has mean 1, it should be true also that G0(N) ⇠ N
2/2.

2 Some history of the problem

The first step towards an explicit formula was to prove not only the just

mentioned asymptotic behaviour of G0(N), but also to find a second

term in addition to the main one, so obtaining the formula

G0(N) = 1

2
N

2 � 2

’
⇢

N
⇢+1

⇢(⇢ + 1) + E(N),

where, as a remark, we note that the sum is absolutely convergent. This

was achieved, under the Riemann hypothesis, by:

• Fujii [3] in 1991, with E(n) ⌧ (N log N)4/3;

• Bhowmik & Schlage-Puchta [1] in 2010, with E(n) ⌧ N log
5

N;

• Languasco & Zaccagnini [5] in 2012, with E(n) ⌧ N log
3

N .

As an interesting and natural extension, Languasco and Zaccagnini

were led to study the function

Gk(N) = 1

�(k + 1)
’
n<N

R(n)
⇣
1 � n

N

⌘k
for k � 0,
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which is the Cesàro-Riesz mean for the number of representations

defined above and which is equal to the previous function for k = 0 and

N < N. In [6], they proved that unconditionally, for k > 1, it holds

Gk(N) = N
2

�(k + 3) � 2Ak(N) + Bk(N) +O(N),

where

Ak(N) =
’
⇢

�(⇢)
�(⇢ + k + 2)N

⇢+1,

Bk(N) =
’
⇢

’
⇢0

�(⇢)�(⇢0)
�(⇢ + ⇢0 + k + 1)N

⇢+⇢0 .

For k = 1, Goldston and Young [4] were able to obtain a similar result

under the Riemann hypothesis.

3 A new approach

All the mentioned results were obtained by using the circle method. In

their recent work, instead, Brüdern, Kaczorowski and Perelli [2] have

dealt with the problem in a di�erent way and have managed to obtain a

formula which is fully explicit.

Their first idea consists in rewriting Gk(N) by means of the simple,

but technically critical observation that

1 � m + n

N
=
⇣
1 � n

N � m

⌘ ⇣
1 � m

N

⌘
,

so that

Gk(N) = 1

�(k + 1)
’
m<N

⇤(m)
⇣
1 � m

N

⌘k ’
n<N�m

⇤(n)
⇣
1 � n

N � m

⌘k

=
1

(2⇡i)2
π
(2)

π
(2)

⇣ 0

⇣
(w) ⇣

0

⇣
(s) �(w)�(s)
�(w + s + k + 1) N

w+s
ds dw,
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where to obtain the second equality a double Mellin transform has been

performed. As usual, one would like to shift the real part of the lines of

integration to �1 and then evaluate the residues; unfortunately, this is

possible only up to a certain point, because there are serious problems

of convergence associated to the trivial zeros from some value on. To

understand the role of this operation and the importance of trying to

move the lines as to the left as possible in the complex plane, we remark

that, for example, shifting the lines to 0 (in real parts) gives the already

mentioned result by Languasco and Zaccagnini [6].

Hence, the three authors show that the s-integral can be shifted from

<s = 2 to <s = �1/2. In this operation, two functions arise, namely

TN (w) = � 1

2⇡i

π
(� 1

2 )
⇣ 0

⇣
(s) �(s)
�(w + s + 1) N

s
ds,

ZN (w) =
’
⇢

�(⇢)
�(⇢ + w + 1) N

⇢,

where either the integral and the sum are are absolutely and compactly

convergent in w > 0, and so they are both holomorphic there. A key

fact, which is proved in Proposition 1 and 2 of [2], is that, for N � 4,
these two functions extend to entire functions with controlled growing

ratio.

To be more precise, there exists a real number K such that, for any

� with 0 < � < 1 and any w = u + iv such that |w + m| > � for all

integers m � 1, we have

TN (w)  K
2
|u |

log(|w | + 2)
� |�(w + 1)| ,

ZN (w) 
K

� |�(w + 1)| ·
(

N
|u |+1 + 2

|u |
log(|w | + 2) if u 2 R,

N
|u |

log N + 2
|u |

log |w | if u  �3/2.

Using this result, one can now shift the w-integration from <w = 2 to

<w = �M, where M can vary, and even go to infinity. In this way, the
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following result, containing the announced completely explicit formula,

can be reached.

Theorem 1 Let us define

⌃�(N, k) = �
1’
⌫=1

res
w=�⌫

⇣ 0

⇣
(w)�(w) N

w

�(w + k + 1),

⌃Z (N, k) = �
1’
⌫=1

res
w=�⌫

⇣ 0

⇣
(w)�(w)ZN (w + k)Nw,

⌃T (N, k) = �
1’
⌫=1

res
w=�⌫

⇣ 0

⇣
(w)�(w)TN (w + k)Nw .

Then, for N integer, N � 4, and k > 0, we have

Gk(N) = N
2

�(k + 3) � 2N ZN (k + 1) +
’
⇢

�(⇢)ZN (⇢ + k)N⇢

� 2
⇣ 0

⇣
(0) N

�(k + 2) + 2
⇣ 0

⇣
(0)ZN (k) + NTN (k + 1)

+

✓
⇣ 0

⇣
(0)

◆2
1

�(k + 1) �
’
⇢

�(⇢)TN (⇢ + k)N⇢ � ⇣ 0

⇣
(0)TN (k)

+ N⌃�(N, k + 1) � ⌃Z (N, k) �
⇣ 0

⇣
(0)⌃�(N, k) + ⌃T (N, k),

where the sums defined above and the ones over nontrivial zeros of ⇣(s)
are absolutely convergent.

To conclude, we make some final remarks.

• The series which define⌃�(N, k) and⌃T (N, k) are actually asymp-

totic expansions: this means that, when considering the series

truncated at ⌫ = M � 2, a sharp error term is obtained, which

is roughly O
�
N

�M�1
�
. This does not hold for ⌃Z (N, k): for the
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tail of its defining series one can only get an error term which

is O
�
N

�k+" �
for every " > 0, which is actually an overall error

term.

• If one restricts to k � 1/2, one can recover the same main terms

as in Languasco and Zaccagnini [6].

• Following this multiplicative approach, which avoids the use of

the circle method, even without the main propositions about the

analytic continuation an explicit formula can be reached with an

overall error term which is o(1).
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1 Introduction

The Riemann zeta function ⇣(s) is defined as the Dirichlet series

⇣(s) =
1’
n=1

1
ns

in the half-plane <(s) > 1 and it is an analytic function on C \ {1}.
Given a primitive Dirichlet character � (mod q), with q > 1, the
Dirichlet L-function L(s, �) is entire and satisfies

L(s, �) =
1’
n=1

�(n)
ns

for <(s) > 0.

It is well-known that the negative even integers are the so-called trivial
zeros of the Riemann zeta function, while the set

Z := {⇢ 2 C | ⇣(s) = 0, ⇢ < �2N0}
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is the set of all non-trivial zeros of ⇣(s). These zeros are non-real and
they are all located in the right half-plane <(s) > 0. The Riemann
hypothesis (RH) states that, for any ⇢ 2 Z, <(⇢) = 1

2 .

For a primitive character � modulo q � 1, let  2 {0, 1} be deter-
mined by �(�1) = (�1) . The set of the trivial zeros of L(s, �) is
{�,�2 � ,�4 � , . . . }, while the set of the non-trivial zeros is

Z(�) := {⇢ 2 C | L(⇢, �) = 0, ⇢ , �2l � , 8l 2 N}.

As for the Riemann zeta function, these non-trivial zeros have posi-
tive real part, but they are not necessarily non-real. The Generalized
Riemann Hypothesis (GRH) states that

<(⇢) = 1
2

for any⇢ 2 Z [ Z(�).

There is an equivalence for RH in terms of zeros of the first derivative
of the Riemann zeta function (cf. [8]).

Theorem 1 (Speiser) The following statements are equivalent

1. ⇣(s) , 0 in 0 < <(s) < 1
2

2. ⇣ 0(s) , 0 in 0 < <(s) < 1
2 .

The result below (see [5]) is a sort of analytic analogue of Speiser’s
theorem. It basically states that ⇣(s) and its first derivative have almost
the same number of zeros in the considered region.

Theorem 2 (Levison and Montgomery) Let N
�(T) (and respectively

N
�
1 (T)) be the number of zeros of ⇣(s) (resp. ⇣ 0(s)) in {� + it | 0 <
� < 1/2, 0 < t < T}, counted with multiplicity. Then, for T � 2

N
�(T) = N

�
1 (T) +O(logT),

where the implied constant is absolute.
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Similar results can be proved for Dirichlet L-functions. Let N
�(T, �)

(and respectively N
�
1 (T, �)) be the number of zeros of L(s, �) (resp.

L
0(s, �)) in the region {� + it | 0 < � < 1/2, |t | < T}, counted with

multiplicity. Moreover, let

m := min{n � 2 | �(n) , 0},

i.e. m is the smallest prime number that does not divide n. Observe
that m = O(logT). The following result holds ([2]).

Theorem 3 (Akatsuka and Suriajaya) For T � 2

N
�(T, �) = N

�
1 (T, �) +O(m1/2 log(qT)),

where the implied constant is absolute.

This allows to show a Speiser-type equivalence for GRH (again cf. [2]).

Theorem 4 (Akatsuka and Suriajaya) Let  = 0 and q � 216. Then
the following statements are equivalent

(i) L(s, �) , 0 in 0 < <(s) < 1
2 .

(ii) L
0(s, �) has a unique zero in 0 < <(s) < 1

2 .

Let  = 1 and q � 23. Then the following statements are equivalent

(i) L(s, �) , 0 in 0 < <(s) < 1
2 .

(ii) L
0(s, �) has no zeros in 0 < <(s) < 1

2 .

Remark 1 The unique zero of the derivative for  = 0 is the zero which
corresponds to the trivial zero of L(s, �) at s = 0.
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2 Zeros of derivatives of the Riemann zeta
function

As for the Riemann zeta function, non-trivial zeros of ⇣ (k)(s) are non-
real zeros. As an upper bound for the real part of the zeros ⇢ of ⇣ (k)(s)
one can consider <(⇢)  7

4 k + 2, proved by Spira [9], even though this
bound can be slightly improved.

Remark 2 It is interesting to observe the distribution of non-trivial
zeros of ⇣(s), ⇣ 0(s) and ⇣ 00(s) (cf. [9, Fig. 1]). So far, all non-trivial
zeros of ⇣(s) lie on the line <(s) = 1

2 , while those of ⇣ 0(s) and ⇣ 00(s)
move further and further to the right. Moreover, except for a pair of
exceptional zeros of ⇣ 00(s) in the left half-plane, the non-trivial zeros
of the first and second derivative seem to appear always in pairs.

Let now N(T) (resp. Nk(T)) be the number of non-trivial zeros ⇢
of ⇣(s) (resp. ⇣ (k)(s)), with 0 < =(⇢) < T , counted with multiplicity.
Then, von Mangoldt [12] and Berndt [3] respectively proved

N(T) = g(T) +O(logT)
Nk(T) = h(T) +O(logT)

where

g(T) :=
T

2⇡
log

T

2⇡
� T

2⇡
and h(T) :=

T

2⇡
log

T

4⇡
� T

2⇡
.

Under the Riemann hypothesis, the error terms can be improved to

O

✓
logT

log logT

◆
and O

✓
logT

(log logT)1/2

◆

respectively. The result for ⇣(s) is due to Littlewood [6], for the first
derivative to Akatsuka [1] and the extension to all k � 2 to Suriajaya
[10]. It can be observed that the main term does not depend on k.
Assuming RH, Ge [4] showed that the error term can be improved to

94



O

✓
logT

log logT

◆
for the first derivative, while the same result for k � 2 is

expected to hold but it is not proved.

Let now
Õ (k) denote the sum over non-trivial zeros ⇢ of ⇣ (k)(s), for

k � 0, with 0 < =(⇢) < T , counted with multiplicity and let

fk(T) =
kT

2⇡
log log

T

2⇡
+

T

2⇡

✓
1
2

log 2 � k log log 2
◆
� k

π T
2⇡

2

dt

log t
.

Since the zeros of ⇣(s) are symmetric with respect to the critical line
<(s) = 1

2 , one gets

⌃(0)
✓
<(s) � 1

2

◆
= 0.

On the other hand, for higher derivatives the zeros are no more sym-
metric. In [5], Levinson and Montgomery proved that

⌃(k)
✓
<(s) � 1

2

◆
= fk(T) +O(logT).

Under RH, the error term can be improved to O((log logT)2). This
result is due to Akatsuka [1] for k = 1 and to Suriajaya [10] for k � 2.

3 Zeros of derivatives of Dirichlet L-functions

In [13], Yıldırım described a zero-free region for the derivatives of the
Dirichlet L-functions.

Theorem 5 (Yıldırım) For any ✏ > 0, there exists a constant K = K✏,k

such that L
(k)(s, �) , 0 holds in

8>><
>>:
� + it 2 C

������ � > 1 +
m

2

✓
1 +

s
1 +

4k2

m log m

◆ 9>>=
>>;

[ {� + it 2 C| |� + it | > q
K,� < �✏, |t | > ✏}.
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He also classified the zeros of L
(k)(s, �) in the following way:

• trivial zeros, located in {� + it |�  �q
K, |t |  ✏}.

• vagrant zeros, located in {� + it | |� + it |  q
K,�  �✏}.

• non-trivial zeros, located in
8>><
>>:
� + it

������ �✏ < �  1 +
m

2

✓
1 +

s
1 +

4k2

m log m

◆ 9>>=
>>;
.

Let now Nk(T, �) be the number of non-trivial and vagrant zeros ⇢ of
L
(k)(s, �), with |=(⇢)|  T , counted with multiplicity.

Theorem 6 (Yıldırım) For T � 2, we have

Nk(T, �) = h(T, �) +O(qK logT),

where
h(T, �) :=

T

⇡
log

qT

2m⇡
� T

⇡
.

Remark 3 In this case, the error term is big in terms of the modulus
q of the character �, since K is big. Assuming GRH does not help to
improve the error term in terms of q.

4 Zeros of the first derivative L
0(s, �)

In [2], Akatsuka and Suriajaya proved that there exist no vagrant zeros
for the first derivative of a Dirichlet L-function. A zero-free region is
described in the result below.

Theorem 7 (Akatsuka and Suriajaya) Let � be a primitive Dirichlet
character modulo q > 1. Then L

0(s, �) has no zeros in⇢
� + it

���� �  0, |t | � 6
log q

�
[
⇢
� + it

���� �  �q
2, |t | � 12

log |� |

�
.
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Remark 4 The zero-free region can be extended to the line <(s) = 1
2

under GRH, avoiding zeros of L(s, �).

Remark 5 Except for a finite number of zeros, each zero of L
0(s, �) in

<(s)  0 corresponds to a trivial zero of L(s, �).

More precisely, the following result holds.

Theorem 8 (Akatsuka and Suriajaya) For each j 2 N0:

• L
0(s, �) has exactly a unique zero at

�2 j �  +O

✓
1

log( jq)

◆

in the strip �2 j �  � 1 < <(s) < �2 j �  + 1.

• L
0(s, �) has no zeros on <(s) = �2 j �  + 1.

1. If  = 0 and q � 7, then L
0(s, �) has no zeros in the strip

�1  <(s)  0.

2. If  = 1 and q � 23, then L
0(s, �) has a unique zero in the strip

�2  <(s)  0

Remark 6 If the character is odd, the unique zero of L
0(s, �) corre-

sponds to the trivial zero of L(s, �) at s = �1.

For the excluded characters, there is at most a finite number of zeros of
L
0(s, �) in�1  <(s)  0 if the character is even and in�2  <(s)  0

if the character is odd. Then, except for a finite number of Dirichlet
character, there is a one-to-one correspondence between the zeros of
L
0(s, �) in <(s)  0 and the trivial zeros of L(s, �). Thus, the zeros in

the left half-plane of L
0(s, �) can all be classified as trivial.

One can now focus on the non-trivial zeros in the right half-plane.
In [7], Selberg proved that

N(T, �) = g(T, q) +O(log(qT)),
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where N(T, �) is the number of zeros ⇢ of L(s, �) with <(⇢) > 0 and
|=(⇢)|  T , counted with multiplicity and

g(T, q) :=
T

⇡
log

qT

2⇡
� T

⇡
.

He also improved the error term to O

✓
log(qT )

log log(qT )

◆
under GRH.

In the unconditional case, Akatsuka and Suriajaya [2] improved the
error term to O(m1/2 log(qT)) for the number of non-trivial zeros of
L
0(s, �) in the right half-plane. Recalling that m = O(log q), notice

that the error term is small.
Assuming GRH, Suriajaya [11] got an error term of the form

O

✓
log q + A(q,T)m

1/2 log(qT)
log log(qT)

◆
,

where A(q,T) is a comparison factor

A(q,T) := min
⇢
(log log(qT))1/2, 1 + m

1/2

log log(qT)

�
.

Another improvement to the error term, under GRH, was proved by Ge
(2018). He got

O

✓
log(qT)

log log(qT) +
p

m log(2m) log(qT)
◆
.

Finally, as in the case of ⇣(s) and its derivatives, one can consider the
real part distribution of the zeros. Let

Õ (0) and
Õ0 denote the sum over

the zeros ⇢, with <(⇢) > 0 and |=(⇢)|  T , counted with multiplicity,
of L(s, �) and L

0(s, �) respectively. Then,

⌃(0)
✓
<(⇢) � 1

2

◆
= 0

and
⌃0
✓
<(⇢) � 1

2

◆
= f1(T, �) +O(m1/2 log(qT)),
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where

f1(T, �) =
T

⇡
log log

qT

2⇡
+

T

⇡

✓
1
2

log m � log log m

◆
� 2

q

π qT
2⇡

2

dt

log t
.

This result was proved by Akatsuka and Suriajaya [2], while in [11]
Suriajaya also proved that, under the generalized Riemann hypothesis,
the error term can be improved to

O(m1/2(log log(qT))2 + m log log(qT) + m
1/2 log q).
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Representation of integers

by cyclotomic binary forms

Editorial Committe

The homogeneous form�n(X,Y ) of degree '(n) which is associated
with the cyclotomic polynomial �n(t) is dubbed a cyclotomic binary
form. A positive integer m � 1 is said to be representable by a cy-
clotomic binary form if there exist integers n, x, y with n � 3 and
max{|x |, |y |} � 2 such that �n(x, y) = m. These definitions give rise
to a number of questions that we are going to address.

This is a joint work with �tienne Fouvry and Claude Levesque
[FLW].

1 Cyclotomic polynomials

1.1 Definition

The sequence (�n(t))n�1 can be defined by induction:

�1(t) = t � 1, t
n � 1 =

÷
d |n
�d(t).
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Hence,
�n(t) =

t
n � 1÷

d,n
d |n

�d(t)
·

When p is prime, from

t
p � 1 = (t � 1)(tp�1 + t

p�2 + · · · + t + 1) = �1(t)�p(t),

one deduces �p(t) = t
p�1 + t

p�2 + · · · + t + 1. For instance

�2(t) = t + 1, �3(t) = t
2 + t + 1, �5(t) = t

4 + t
3 + t

2 + t + 1.

Further examples are

�4(t) =
t
4 � 1

�1(t)�2(t)
=

t
4 � 1

t2 � 1
= t

2 + 1 = �2(t2),

�6(t) =
t
6 � 1

�1(t)�2(t)�3(t)
=

t
6 � 1

(t + 1)(t3 � 1) =
t
3 + 1
t + 1

= t
2�t+1 = �3(�t).

The degree of �n(t) is '(n), where ' is the Euler totient function.

1.2 Cyclotomic polynomials and roots of unity

For n � 1, if ⇣ is a primitive n–th root of unity, we have, in C[t],

�n(t) =
÷

gcd(j,n)=1
(t � ⇣ j).

For n � 1, �n(t) is the irreducible polynomial over Q of the primitive
n–th roots of unity.

Let K be a field and let n be a positive integer. Assume that K has
characteristic either 0 or else a prime number p prime to n. Then the
polynomial �n(t) is separable over K and its roots in K are exactly the
primitive n–th roots of unity which belong to K .
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1.3 Properties of �n(t)
• For n � 2 we have

�n(t) = t
'(n)�n(1/t)

• Let n = p
e1
1 · · · p

er
r where p1, . . . , pr are di�erent primes, e0 � 0,

ei � 1 for i = 1, . . . , r and r � 1. Denote by R = p1 · · · pr the radical
of n. Then, �n(t) = �R(tn/R). For instance �2e (t) = t

2e�1
+ 1 for e � 1.

• Let n = 2m with m odd � 3. Then �n(t) = �m(�t).
�n(1)

For n � 2, we have �n(1) = e
⇤(n), where the von Mangoldt function

⇤ is defined for n � 1 as

⇤(n) =
(

log p if n = p
r with p prime and r � 1;

0 otherwise.

In other terms, for n � 2, we have

�n(1) =
(

p if n = p
r with p prime and r � 1;

1 otherwise (!(n) � 1).

�n(�1)
For n � 3,

�n(�1) =
(

1 if n is odd;
�n/2(1) if n is even.

In other terms, for n � 3,

�n(�1) =
(

p if n = 2p
r with p prime and r � 1;

1 otherwise.

Hence, �n(�1) = 1 when n is odd or when n = 2m where m has at least
two distinct prime divisors.
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1.4 Lower bound for �n(t)
For n � 3, the polynomial �n(t) is monic, has real coe�cients and no
real root, hence, it takes only positive values (and its degree '(n) is
even).

Lemma 1. For n � 3 and t 2 R, we have

�n(t) � 2�'(n).

Consequence: from �n(t) = t
'(n)�n(1/t) we deduce, for n � 3 and

t 2 R,
�n(t) � 2�'(n) max{1, |t |}'(n). (1.1)

Hence, �n(t) � 2�'(n) for n � 3 and t 2 R.

Proof of Lemma 1. Let ⇣n be a primitive n-th root of unity in C; then

�n(t) = NormQ(⇣n)/Q(t � ⇣n) =
÷
�

(t � �(⇣n)),

where � runs over the embeddings Q(⇣n) ! C. We have

|t��(⇣n)| � |Im(�(⇣n))| > 0 and (2i)Im(�(⇣n)) = �(⇣n)��(⇣n) = �(⇣n�⇣n).

Now (2i)Im(⇣n) = ⇣n � ⇣n 2 Q(⇣n) is an algebraic integer, hence,

2'(n)�n(t) � |NormQ(⇣n)/Q((2i)Im(⇣n))| � 1.

⇤

2 The cyclotomic binary forms

2.1 Definition

For n � 2, define

�n(X,Y ) = Y
'(n)�n(X/Y ).

This is a binary form in Z[X,Y ] of degree '(n). From (1.1) we deduce
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Lemma 2 ([G]). For n � 3 and (x, y) 2 Z2
,

�n(x, y) � 2�'(n) max{|x |, |y |}'(n).

Therefore, if �n(x, y) = m, then

max{|x |, |y |}  2m
1/'(n). (2.1)

As a consequence, if max{|x |, |y |} � 3, then n is bounded:

'(n)  log m

log(3/2) ·

2.2 Generalization to CM fields

The same proof yields:

Proposition 3 ([GL, G]). Let K be a CM field of degree d over Q. Let

↵ 2 K be such that K = Q(↵); let f be the irreducible polynomial of

↵ over Q and let F(X,Y ) = Y
d

f (X/Y ) the associated homogeneous

binary form:

f (t) = a0t
d+a1t

d�1+· · ·+ad, F(X,Y ) = a0X
d+a1X

d�1
Y+· · ·+adY

d .

For (x, y) 2 Z2
we have

x
d  2da

d�1
d F(x, y) and yd  2da

d�1
0 F(x, y).

The estimate of Proposition 3 is best possible: let n � 3, not of the
form p

a nor 2p
a with p prime and a � 1, so that �n(1) = �n(�1) = 1.

Then the binary form Fn(X,Y ) = �n(X,Y � X) has degree d = '(n)
and a0 = ad = 1. For x 2 Z we have Fn(x, 2x) = �n(x, x) = x

d.
Hence, for y = 2x, we have

yd = 2da
d�1
0 F(x, y).
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2.3 Improvement of Gy�ry’s estimate for binary cyclotomic

forms [FLW]

We improve the upper bound (2.1) in order to have a non trivial result
also for max{|x |, |y |} = 2.

Theorem 4 ([FLW]). Let m be a positive integer and let n, x, y be

rational integers satisfying n � 3, max{|x |, |y |} � 2 and �n(x, y) = m.

Then

max{|x |, |y |}  2p
3

m
1/'(n), hence, '(n)  2

log 3
log m.

These estimates are optimal, since for ` � 1, we have �3(`,�2`) =
3`2. If we assume '(n) > 2, which means '(n) � 4, then

'(n)  4
log 11

log m

which is best possible since �5(1,�2) = 11.

2.4 Lower bound for the cyclotomic polynomials

Theorem 4 is equivalent to the following result:

Proposition 5 ([FLW]). For n � 3 and t 2 R,

�n(t) �
 p

3
2

!'(n)
.

2.5 The sequence (cn)n�3

Define
cn = inf

t2R
�n(t) (n � 3).

Hence, for x and y in Z and for n � 3 we have

�n(x, y) � cn max{|x |, |y |}'(n).
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According to Proposition 5, for n � 3 we have

cn �
 p

3
2

!'(n)
.

Let n � 3. Write n = 2e0 p
e1
1 · · · p

er
r where p1, . . . , pr are odd primes

with p1 < · · · < pr , e0 � 0, ei � 1 for i = 1, . . . , r and r � 0. Then
(i) For r = 0, we have e0 � 2 and cn = c2e0 = 1.
(ii) For r � 1 we have

cn = cp1 · · ·pr � p
�2r�2

1 .

The main step in the proof of Proposition 5 is the following:
Lemma 6 ([FLW]). For any odd squarefree integer n = p1 · · · pr with

p1 < p2 < · · · < pr satisfying n � 11 and n , 15, we have

'(n) > 2r+1 log p1.

Further properties of the sequence (cn)n�3.

• lim inf
n!1

cn = 0 and lim sup
n!1

cn = 1.

• The sequence (cp)p odd prime is decreasing from 3/4 to 1/2.

• For p1 and p2 primes, cp1p2 � 1
p1

·

• For any prime p1, lim
p2!1

cp1p2 =
1
p1

·

3 The sequence (am)m�1

For each integer m � 1, the set�
(n, x, y) 2 N ⇥ Z2 | n � 3, max{|x |, |y |} � 2, �n(x, y) = m

 
is finite. Let am the number of its elements.

The sequence of integers m � 1 such that am � 1 starts with the
following values of am

m 3 4 5 7 8 9 10 11 12 13 16 17
am 8 16 8 24 4 16 8 8 12 40 40 16
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3.1 Online Encyclopedia of Integer Sequences [OEIS]

Number of representations of integers by cyclotomic binary forms.
(OEIS A299214) The sequence (am)m�1 starts with

0, 0, 8, 16, 8, 0, 24, 4, 16, 8, 8, 12, 40, 0, 0, 40, 16, 4, 24, 8, 24, 0, 0, 0, 24, 8, 12, 24, 8, 0, 32, 8, 0,
8, 0, 16, 32, 0, 24, 8, 8, 0, 32, 0, 8, 0, 0, 12, 40, 12, 0, 32, 8, 0, 8, 0, 32, 8, 0, 0, 48, 0, 24, 40, 16, 0, . . .

Integers represented by cyclotomic binary forms
(OEIS A296095) am , 0 for m =

3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 16, 17, 18, 19, 20, 21, 25, 26, 27, 28, 29, 31, 32, 34, 36, 37, 39, 40,
41, 43, 45, 48, 49, 50, 52, 53, 55, 57, 58, 61, 63, 64, 65, 67, 68, 72, 73, 74, 75, 76, 79, 80, 81, 82, . . .

Integers not represented by cyclotomic binary forms
(OEIS A293654) am = 0 for m =

1, 2, 6, 14, 15, 22, 23, 24, 30, 33, 35, 38, 42, 44, 46, 47, 51, 54, 56, 59, 60, 62, 66, 69, 70, 71, 77,
78, 83, 86, 87, 88, 92, 94, 95, 96, 99, 102, 105, 107, 110, 114, 115, 118, 119, 120, 123, 126, 131, . . .

4 Integers represented by cyclotomic binary

forms

For N � 1, let A(N) be the number of m  N which are represented
by cyclotomic binary forms: there exists n � 3 and (x, y) 2 Z2 with
max(|x |, |y |) � 2 and m = �n(x, y). This means

A(N) = #{m 2 N | m  N, am , 0}.
Theorem 7 ([FLW]). We have

A(N) = ↵ N

(log N) 1
2
� � N

(log N) 3
4
+O

 
N

(log N) 3
2

!
as N ! 1.

The number of positive integers  N represented by �4 (namely the
sums of two squares) is

↵4
N

(log N) 1
2
+O

 
N

(log N) 3
2

!
.
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The number of positive integers  N represented by �3 (namely x
2 +

xy + y2: Loeschian numbers) is

↵3
N

(log N) 1
2
+O

 
N

(log N) 3
2

!
.

The number of positive integers  N represented by �4 and by �3 is

�
N

(log N) 3
4
+O

 
N

(log N) 7
4

!
.

Theorem 7 holds with ↵ = ↵3 + ↵4.
The number of positive integers  N which are sums of two squares

is asymptotically ↵4N(log N)�1/2, where

↵4 =
1
2 1

2
·

÷
p ⌘ 3 mod 4

✓
1 � 1

p2

◆� 1
2

.

Decimal expansion of Landau-Ramanujan constant (OEIS
A064533)

↵4 = 0.764 223 653 589 220 . . .

If a and q are two integers, we denote by Pa,q the set of primes
p ⌘ a mod q and by Na,q any integer � 1 satisfying the condition
p | Na,q =) p ⌘ a mod q.

An integer m � 1 is of the form m = �4(x, y) = x
2 + y2 if and only

if there exist integers a � 0, N3,4 and N1,4 such that m = 2a N
2
3,4 N1,4.

An integer m � 1 is of the form

m = �3(x, y) = �6(x,�y) = x
2 + xy + y2

if and only if there exist integers b � 0, N2,3 and N1,3 such that m =

3b N
2
2,3 N1,3.
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The number of positive integers  N which are represented by the
quadratic form X

2 + XY + Y
2 is asymptotically ↵3N(log N)�1/2 where

↵3 =
1

2 1
2 3 1

4
·

÷
p ⌘ 2 mod 3

✓
1 � 1

p2

◆� 1
2

.

Decimal expansion of an analog of the Landau-Ramanujan
constant for Loeschian numbers (OEIS A301429)

↵3 =
1

2 1
2 3 1

4
·

÷
p ⌘ 2 mod 3

✓
1 � 1

p2

◆� 1
2

= 0.638 909 405 44 . . .

Hence,
↵ = ↵3 + ↵4 = 1.403 133 059 034 . . .

Using the method of Flajolet and Vardi, Bill Allombert (private com-
munication, April 2018) computed

↵3 = 0.63890940544534388225494267492824509375497550802912
334542169236570807631002764965824689717911252866438814 . . .

Decimal expansion of an analog of the Landau-Ramanujan
constant for Loeschian numbers which are sums of two squares
(OEIS A301430)

� =
3 1

4

2 5
4
· ⇡ 1

2 · (log(2 +
p

3)) 1
4 · 1
�(1/4) ·

÷
p ⌘ 5, 7, 11 mod 12

⇣
1 � 1

p2

⌘� 1
2

= 0.302 316 142 35 . . .

Using the method of Flajolet and Vardi, Bill Allombert (private com-
munication, April 2018) computed

� = 0.3023161423570656379477699004801997156024127951893696454588
678412888654487524105108994874678139792727085677659132725910 . . .
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Further developments

• Prove similar estimates for the number of integers represented by
other binary forms (done for quadratic forms); e.g.: prove similar
estimates for the number of integers which are sums of two cubes, two
biquadrates,. . .
• Prove similar estimates for the number of integers which are repre-
sented by �n for a given n.
• Prove similar estimates for the number of integers which are repre-
sented by �n for some n with '(n) � d.

5 Representation of integers by positive definite

quadratic forms

Theorem 8 (P. Bernays [B]). Let F 2 Z[X,Y ] be a positive definite

quadratic form. There exists a positive constant CF such that, for

N ! 1, the number of positive integers m 2 Z, m  N which are

represented by F is asymptotically CFN(log N)� 1
2 .

Theorem 9 (Stewart - Xiao [S–Y]). Let F be a binary form of degree

d � 3 with nonzero discriminant.

There exists a positive constant CF > 0 such that the number of

integers of absolute value at most N which are represented by F(X,Y )
is asymptotic to CFN

2/d
.

Proposition 10 (K. Mahler [M]). Let F be a binary form of degree

d � 3 with nonzero discriminant. Denote by AF the area (Lebesgue

measure) of the domain

{(x, y) 2 R2 | F(x, y)  1}.

For Z > 0 denote by NF (Z) the number of (x, y) 2 Z2
such that

0 < |F(x, y)|  Z . Then

NF (Z) = AF Z
2/d +O(Z1/(d�1))

111



as Z ! 1.

The situation for positive definite forms of degree � 3 is di�erent for
the following reason: if a positive integer m is represented by a positive
definite quadratic form, it usually has many such representations; while
if a positive integer m is represented by a positive definite binary form
of degree d � 3, it usually has few such representations. If F is a
positive definite quadratic form, the number of (x, y) with F(x, y)  N

is asymptotically a constant times N , but the number of F(x, y) is much
smaller.

If F is a positive definite binary form of degree d � 3, the number
of (x, y) with F(x, y)  N is asymptotically a constant times N

1/d, the
number of F(x, y) is also asymptotically a constant times N

1/d.

Sums of k–th powers

If a positive integer m is a sum of two squares, there are many such
representations. Indeed, the number of (x, y) in Z ⇥ Z with x

2 + y2 
N is asymptotic to ⇡N , while the number of values  N taken by
the quadratic form �4 is asymptotic to ↵4N/

p
log N where ↵4 is the

Landau–Ramanujan constant. Hence, �4 takes each of these values
with a high multiplicity, on the average (⇡/↵)

p
log N .

On the opposite, it is extremely rare that a positive integer is a sum
of two biquadrates in more than one way (not counting symmetries).

635 318 657 = 1584 + 594 = 1344 + 1334. Leonhard Euler1707 –
1783

The smallest integer represented by x
4+y4 in two essentially di�erent

ways was found by Euler, it is 635318657 = 41 · 113 · 241 · 569.
Number of solutions to the equation x

4+ y4 = n with x �
y > 0 (OEIS A216284)
An infinite family with one parameter is known for non trivial solutions
to x

4
1 + x

4
2 = x

4
3 + x

4
4 , see:

http://mathworld.wolfram.com/DiophantineEquation4thPowers.html
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Sums of k–th powers

One conjectures that given k � 5, if an integer is of the form x
k + yk ,

there is essentially a unique such representation. But there is no value
of k for which this has been proved.

The situation for positive definite forms of degree � 3 is di�erent
also for the following reason. A necessary and su�cient condition for
a number m to be represented by one of the quadratic forms �3, �4, is
given by a congruence. By contrast, consider the quartic binary form
�8(X,Y ) = X

4 + Y
4. On the one hand, an integer represented by �8 is

of the form
N1,8(N3,8N5,8N7,8)4.

On the other hand, there are many integers of this form which are not
represented by �8.
Quartan primes: primes of the form x

4+y4, x > 0, y > 0 (OEIS A002645)
The list of prime numbers represented by �8 start with

2, 17, 97, 257, 337, 641, 881, 1297, 2417, 2657, 3697, 4177, 4721, 6577, 10657, 12401, 14657,
14897, 15937, 16561, 28817, 38561, 39041, 49297, 54721, 65537, 65617, 66161, 66977, 80177, . . .

It is not known whether this list is finite or not.
The largest known quartan prime is currently the largest known gener-
alized Fermat prime: The 1353265-digit (14531065536)4 + 14.
Primes of the form x

2k + y2k (See https://oeis.org/)
[OEIS A002313] primes of the form x

2 + y2.
[OEIS A002645] primes of the form x

4 + y4,
[OEIS A006686] primes of the form x

8 + y8,
[OEIS A100266] primes of the form x

16 + y16,
[OEIS A100267] primes of the form x

32 + y32.
But it is known that there are infinitely many prime numbers of the
form X

2 + Y
4 [FI].
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of abelian varieties

Fabrizio Barroero

Let n be an integer with n � 2 and let E� denote the elliptic curve

in the Legendre form defined by Y
2 = X(X � 1)(X � �). Masser and

Zannier showed that there are at most finitely many complex numbers

�0 , 0, 1 such that the two points

⇣
2,
p

2(2 � �0)
⌘

and

⇣
3,
p

6(3 � �0)
⌘

both have finite order on the elliptic curve E�0
. Later Masser and

Zannier proved that one can replace 2 and 3 with any two distinct

complex numbers (, 0, 1) or even choose distinct X-coordinates (, �)
defined over an algebraic closure of C(�).

In his book, Zannier asks if there are finitely many �0 2 C such

that two independent relations between the points

⇣
2,
p

2(2 � �0)
⌘
,⇣

3,
p

6(3 � �0)
⌘

and

⇣
5,
p

20(5 � �0)
⌘

hold on E�0
.

In joint work with Laura Capuano we proved that this question has

a positive answer, as Zannier expected in view of very general conjec-

tures. We actually showed a more general result, analogous to the one

of Masser and Zannier.

Theorem 1 Let C ✓ A2n+1 be an irreducible curve defined overQwith
coordinate functions (x1, y1, . . . , xn, yn, �), � non-constant, such that,
for every j = 1, . . . , n, the points Pj = (xj, yj) lie on E� and there are
no integers a1, . . . , an 2 Z, not all zero, such that a1P1+ · · ·+anPn = O
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identically on C. Then there are at most finitely many c 2 C such that
the points P1(c), . . . , Pn(c) satisfy two independent relations on E�(c).

In later works we extended the theorem to abelian schemes.

Fix a number field k and a smooth irreducible curve S defined over k.

We consider an abelian scheme A over S of relative dimension g � 2,

also defined over k. This means that for each s 2 S(C) we have an

abelian variety As of dimension g defined over k(s).
Let C be an irreducible curve in A also defined over k and not con-

tained in a proper subgroup scheme of A, even after a base extension.

A component of a subgroup scheme of A is either a component of

an algebraic subgroup of a fiber or it dominates the base curve S. A

subgroup scheme whose irreducible components are all of the latter

kind is called flat.

The following theorem follows from joint works with Laura Capuano

and a work of Habegger and Pila in the iso-trivial case.

Theorem 2 Let k and S be as above. Let A ! S be an abelian scheme
and C an irreducible curve in A not contained in a proper subgroup
scheme of A, even after a finite base change. Suppose that A and C
are defined over k. Then, the intersection of C with the union of all flat
subgroup schemes of A of codimension at least 2 is a finite set.
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The SierpiÒski d-dimensional
tetrahedron and a Diophantine

nonlinear system
Fabio Caldarola

The SierpiÒski tetrahedron �d is the d-dimensional generalization of
the most known SierpiÒski gasket which appears in many fields of math-
ematics and applied sciences. Starting from a generating sequence of
d-polytopes

�
�dn

 
n

for �d
�
where �d0 is the unitary d-simplex

�
, we find

closed formulas for the sum vd, kn of the measures of the k-dimensional
elements of �dn , deducing the behavior of the sequences

�
vd, kn

 
n

at
infinity, both in traditional analysis and in a recently proposed setting
based on the symbol ¨. The interesting point for us is that the use of
such a new framework (just at a notational level) lead us to formulate
several problems in form of Diophantine systems, which can be studied
and investigated in terms of classical number theory by working with
traditional tools from algebra, analysis, etc.
Complex problems arise in this way and, in particular, in the considered
case we come to the following Diophantine system (see [1] for details)

8>>>>><
>>>>>:

p
k + 1

k!
p

2k
·
✓
d + 1
k + 1

◆
=

p
h + 1

h!
p

2h
·
✓
t + 1
h + 1

◆

d + 1
2k

=
t + 1
2h

. (1)
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Equations like the previous are not properly “Diophantine” because
this word usually refers only to equations of polynomial or exponential
type. Moreover, they are not very present in literature and still very little
studied: just few authors call them binomial Diophantine equations.

The problem of deciding whether there are nontrivial integer solu-
tions of a system like (1), and if so to find them all, is not a simple matter
in general; for example, by using the most powerful scientific compu-
tational software available today (like, for instance, Mathematicar 11.0
or many others) it is not possible to obtain any answer except for very
small values of d and t, cause the complexity of (1).

In conclusion, while if we vary the size of the starting d-simplex
�d0 in an appropriate way we achieve systems with nontrivial integer
solutions, in our case instead, as consequence of stronger theoretical
results, we obtain the following

Corollary 1 There are no integer solutions (d, t, k, h) 2 N4 of the
system (1), such that 1 6 k 6 d, 1 6 h 6 t and 2 6 d < t.
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Explicit formula for the average of
Goldbach and prime tuples

representations
Marco Cantarini

We prove an explicit formula and an asymptotic formula for the aver-

age of the functions rG (n) = Õ
m1,m2n

m1+m2=n

⇤ (m1)⇤ (m2) and rPT (N, h) =
ÕN

n=0
⇤ (n)⇤ (n + h) , h 2 N, which are the counting function of the

Goldbach numbers and the counting function of the prime tuples, re-

spectively. We will find an explicit formula and we will prove that it is

possible write it as an asymptotic formula with three terms and an error

term O (N) without the assumption of the Riemann hypothesis (RH for

brevity). We prove the following

Theorem 1 Let N > 2 be an integer. Then

’
n2N

rG (n) � rG (2N)
2

= 2N2 � 2

’
⇢

(2N � 2)⇢+1

⇢ (⇢ + 1) +

+2

’
⇢1

(2N)⇢1

 
� (⇢1)

’
⇢2

(2N)⇢2 � (⇢2)
� (⇢1 + ⇢2 + 1) �

’
⇢2

(2N)⇢2

⇢2

· B
!
+ F (N)

where
B =

�
B1/N (⇢2 + 1, ⇢1) + B1/2 (⇢1, ⇢2 + 1)

�
,
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Bz (a, b) is the incomplete Beta function, ⇢ = � + i� (with or without
subscript) runs over the non-trivial zeros of the Riemann Zeta function
⇣ (s), and F (N) is a function that can be explicitly calculated in terms
of elementary functions, series over non-trivial zeros, Dilogarithm and
incomplete Beta functions, satisfying F (N) = O (N), as N goes to
infinity.

We are also able to find a truncated version of this formula (like the

classical explicit formula of  (x) = Õ
nx ⇤(n).). It is interesting to

note that if we assume the third term of the explicit formula in Theorem

1 grows in a suitable way as N ! 1 then we can prove that every

interval [2N, 2N + 2H], where H = H (N) is an appropriate function

of N , contains a Goldbach number. Using the same ideas of Theorem

1 we also find a completely explicit formula for rPT (N, h) .
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New instances of the
Mumford–Tate conjecture

Victoria Cantoral-Farfán

Let A be a simple abelian variety defined over a number field K of
dimension g. Let MT(A) be the Mumford–Tate group of A, which is
an algebraic reductive group defined over Q. Let GK be the absolute
Galois group of K , ` a prime number and T`(A) the `-adic Tate module
of A. Let us consider the following `-adic representation:

⇢` : GK ! Aut(T`) ' GL2g(Z`).

We define the `-adic monodromy group G` as the Zariski closure of
the image of ⇢` , it is an algebraic group over Q` .

Conjecture 0.1 (Mumford–Tate ‘66) For every prime number ` we
have

G�
` ' MT(A) ⌦Q Q` .

Definition 0.2 An abelian variety A is fully of Lefschetz type if A sat-
isfies conjecture 0.1 and MT(A) is the Lefschetz group, i.e the group of
symplectic similitudes which commutes with endomorphisms.

An abelian variety is of type III, in the sense of Albert classification,
if D := EndK (A) ⌦ Q is an indefinite quaternion algebra over a totally
real field F := Z(D) of degree e over Q. Let us denote h := g

2e the
relative dimension of A in the type III case.
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Theorem 0.3 (C.-F., 2017) Let A be a simple abelian variety of type
III. Assume that one of the two conditions is satisfied:

1. h 2 {2k + 1, k 2 N} \
� 1

2
�2m+2

2m+1
�
, m 2 N

 
;

2. Z(D) = Q and h < ⌃

The A is fully of Lefschetz type.

The reader can find the definition of ⌃ in [Can17], for instance:

⌃ = {4, 6, 8, 16, 36, 64, 70, 100, 128, 144, 196, 216, 256, 324, 400, 484}.

Further applications of this theorem 0.3 can be found in the direction
of the Algebraic Sato–Tate conjecture stated by Banaszak and Kedlaya
in [BK15]. For instance we can give a new list of abelian varieties
which are fully of Lefschetz type and such that the twisted Lefschetz
group is connected. In that scenario, those abelian varieties satisfy the
Algebraic Sato–Tate conjecture.
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Expansions of quadratic numbers
in a p-adic continued fraction

Laura Capuano

The theory of real continued fractions plays a central role in real

Diophantine Approximation for many di�erent reasons, in particular

because the convergents of the simple continued fraction expansion of

a real number ↵ give the best rational approximations to ↵. Motivated

by the same type of questions, several authors (Mahler, Schneider,

Ruban, Bundschuch and Browkin) have generalized the theory of real

continued fractions to the `-adic case in various ways.

The theory of `-adic continued fractions presents many di�erences

with respect to the real case. First of all, there is no canonical way

to define a continued fraction expansion in this context, as the expan-

sion depends on the chosen system of residues mod `, and the basic

properties of finiteness and periodicity change with this choice. The

`-adic process which is the most similar to the classical real one was

mentioned for the first time in one of the earliest papers on the subject

by Mahler and then studied accurately by Ruban, who showed that these

continued fractions enjoy nice ergodic properties.

In a joint work with F. Veneziano and U. Zannier we investigate

questions about finiteness and periodicity of Ruban’s continued fraction

expansions.

In the classical real case, a real number has finite continued fraction

expansion if and only if the number is rational, and Lagrange’s theorem
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ensures that a real number has an infinite periodic continued fraction

expansion if and only if it is quadratic irrational.

For Ruban’s continued fraction expansion instead, also rational num-

bers can have periodic continued fractions, as showed by Laohakosol

and independently by Wang. Moreover, for quadratic irrationals, no

full analogue of Lagrange’s theorem holds, as showed by Ooto, but

it was not known how to decide whether the expansion for a given

quadratic number is or is not periodic. In our work, we give a com-

pletely general algorithm in this sense which, somewhat surprisingly,

depends on the “real” values of the complete quotients appearing in the

`-adic continued fraction expansion:

Theorem 1 Let ↵ 2 Q` \ Q be a quadratic irrational over Q. Then,
the Ruban continued fraction expansion of ↵ is periodic if and only if
there exists a unique real embedding j : Q(↵) ! R such that the image
of each complete quotient ↵n under the map j is positive.

Moreover, there is an e�ective constant N↵ with the property that,
either 9 n  N↵ such that ↵n does not have a positive real embedding,
and therefore the expansion is not periodic, or 9 n1 < n2  N↵ such
that ↵n1

= ↵n2
, hence the expansion is periodic.

If ↵ 2 Q` is of the form ↵ = b+
p
�

c with b, c,� integers and � > 0

not a square in Q` , then the constant N↵ in the Theorem can be taken

equal to bc + 2(c
p
� + 1)3.
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Correlations of Ramanujan
expansions
Giovanni Coppola

The correlation (“shifted convolution sum”) of any f , g : N ! C is

(1) Cf ,g(N, a)
def
=

’
nN

f (n)g(n + a).

The integer a > 0 is the shift. Classic heuristic:

(2) Cf ,g(N, a) ⇠ Sf ,g(a)N, Sf ,g(a)
def
=

1’
q=1

bf (q)bg(q)cq(a),

Sf ,g is the singular series and cq(a)
def
=

Õ
j2Z⇤

q
cos(2⇡ ja/q) is the Ra-

manujan sum. Now Sf ,g is a finite sum, from Vital Remark: we have
finite Ramanujan coe�cients f̂ , ĝ, by f

0 def= f ⇤ µ, g0 def= g ⇤ µ and
Möbius inversion

(3) bf (q) def= ’
dN

d⌘0 mod q

f
0(d)
d
, bg(q) def= ’

dN+a
d⌘0 mod q

g0(d)
d
.

With Ram Murty we found the Ramanujan exact explicit formula
[J.Number Theory 185(2018),16–47] (here '(q) is Euler function):

(Ree f ) Cf ,g(N, a) =
’
qN

bg(q)
'(q)

’
nN

f (n)cq(n)cq(a).
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It is not for free: under Basic Hypotheses, needs some conditions. On
[JNT,Th.1] we gave 3 equivalent ones. We give now other 4.
As usual !(d) def= |{p prime : p divides d}| and the Eratosthenes
Transform (E.t. for short) of Cf ,g is

C
0
f ,g(N, d)

def
=

’
t |d

Cf ,g(N, t)µ(d/t).

Under BH (Th.1 hypotheses), Reef’s equivalent to (F.A.E.):

(Delange Hypothesis)
’
d

2!(d)
���C 0

f ,g(N, d)
��� /d < 1

(E .t.Ree f ) C
0
f ,g(N, d) = d

’
kQ

d

µ(k)bg(dk)
'(dk)

’
nN

f (n)cdk(n)

’
d>Q

1
d

C
0
f ,g(N, d)

’
`>Q
` |d

c`(a) = 0, 8a 2 N

lim
T!1

’
`T

’
d>T

d⌘0 mod `

1
d

C
0
f ,g(N, d)c`(a) = 0, 8a 2 N
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Correlations of Multiplicative
Functions

Pranendu Darbar

Let gj : N! C be multiplicative functions such that |gj(n)|  1 for

all n. Let F1(x), F2(x), F3(x) are relatively co-prime polynomials.

Consider the following triple correlation function:

Mx(g1, g2, g3) =
1

x

’
nx

g1(F1(n))g2(F2(n))g3(F3(n)). (1)

In [KAT], Kátai studied the asymptotic bahaviour of the above sum

(1) when Fj(x) are special polynomials but did not provide error term.

In [ST4], Stepanauskas studied the asymptotic formula for sum (1)with

explicit error term when Fj(x), j = 1, 2, 3 are linear polynomials.

The aim of the article [DAR] is to prove the following statement:

Theorem 1 Let Fj(x), j = 1, 2, 3 be polynomials as above of degree

greater than or equal to 2. Let g1, g2 and g3 be multiplicative functions

as above. Then there exists a positive absolute constant c and a natural

number � such that for all x � r � � and for all 1 � 1

v1+v2+v3

< ↵ < 1,
we have

Mx(g1, g2, g3) � P
0(x) ⌧ 1

x
(F1(x)F2(x)F3(x))1�↵ exp

✓
cr

↵

log r

◆

+ (T(x)) 1

2 + (S(r, x)) 1

2 + (r log r)� 1

2 +
1

x
C(r, x) + 1

log x

where vj denote the degree of the polynomials Fj(n) respectively.
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The following corollary is a direct application of the Theorem 1.

Corollary 2 Let �(n) be Euler’s totient function and �(n) = Õ
d |n d.

Let F1(x) = x
2 + b, F2(x) = x

2 + c, F3(x) = x
2 + d, 0 < t < 1, where

b, c, d are taken such that Fj(x), j = 1, 2, 3 satisfies the assumption of

Theorem 1 and is a quadratic residue for all odd prime p. Then there

exist a natural number � such that for all x � �,

1

x

’
nx

�(n2 + b)�(n2 + c)�(n2 + d)
�(n2 + b)�(n2 + c)�(n2 + d) = P

0
1
(�)

÷
p>�

w0
p +O

✓
1

(log x)t
◆

where w0
p =

✓
1 � 6

p + 6

⇣
1 � 1

p

⌘2 1Õ
m=1

1

1+p+· · ·+pm

◆
.

For more details see [DAR].
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Diophantine approximation
problem with 3 prime variables

Alessandro Gambini

We will prove that the inequality

|�1p1 + �2p2 + �3pk
3
� ! |  (max(p1, p2, pk3)) (k)+"

where

 (k) =

8>>>>>><
>>>>>>:

(3 � 2k)/(6k) se 1 < k  6/5
1/12 se 6/5 < k  2

(3 � k)/(6k) se 2 < k < 3

1/24 se k = 3

has infinitely many solutions in prime variables p1, p2 and p3 for any

given real number !, with �1, �2 and �3 non-zero real numbers, not all

of the same sign and such that �1/�2 is not rational, and 1 < k  3 real

(see [1]).

It is easy to see that the hypothesis on the sign is natural, if one wants

to approximate all real numbers, and the hypothesis on the ratio �1/�2

is necessary to avoid trivial cases where the inequality can not hold.

The values for  depend on suitable bounds for the relevant expo-

nential sums over prime powers. The proof uses a variant of the circle

method technique introduced by Davenport & Heilbronn where the in-

tegration on a circle is replaced by the integration on the whole real

line, split in a major arc (that provides the main term), an intermediate
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arc, a minor arc and a trivial arc. The contributions of the last three

subsets turn out to be small.

In this kind of problems we can not count “exact hits” hence, we need

a measure of “proximity” which can be provided in a number of ways,

even tough, the crucial property is the rate of vanishing at infinity that

must not be too slow.

Theorem is proved on a suitable sequence Xn with limit +1, related

to the convergent of the fraction �1/�2 exploiting the fact that we know

that there exist infinitely many solutions of the inequality�����1

�2

� a
q

���� < 1

q2
.

The main tools used to proved the Theorem are suitable estimations

of the Ln
-norm of the exponential sums over primes and the Harman

technique on the minor arc.
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Counting rational points on genus
one curves
Manh Hung Tran

We study the density of rational points on genus one curves C by

giving uniform upper bounds for the counting function

N(C, B) := ]{P 2 C(Q) : H(P)  B},

where the height function H is defined as H(P) := max{|x0 |, ..., |xn |}
for P = [x0, ..., xn] with gcd(x0, ..., xn) = 1. The main tools to study

this problem are descent and determinant methods. We proved new

results for genus one curves in two important forms: smooth plane

cubic curves and complete intersections of two quadrics in P3
.

Let C ⇢ P2
be a smooth cubic curve and r=rank(Jac(C)), then for

any positive integer m

N(C, B) ⌧ m
r
⇣
B

2

3m2 + m
2

⌘
log B.

Taking m = 1 + [
p

log B] we obtain N(C, B) ⌧ (log B)2+r/2. This

should be compared with the classical non-uniform bound of Néron:

N(C, B) ⇠ cF (log B)r/2.
For a non-singular quartic curve C in P3

defined by a complete

intersection of two quadric surfaces Q1 = 0 and Q2 = 0, where Q1,Q2 2
Z[x0, x1, x2, x3](2). Then C is also of genus one and Jac(C) is an elliptic

133



curve and again we can use descent argument. We obtain similar

estimates as in cubic case

N(C, B) ⌧ m
r
⇣
B

1

2m2 + log B

⌘
log B

and

N(C, B) ⌧ (log B)2+r/2.
Moreover, we obtain completely uniform bound for genus one curves

in P3
given in diagonal forms:

C :

⇢
a0x

2

0
+ a1x

2

1
+ a2x

2

2
+ a3x

2

3
= 0

b0x
2

0
+ b1x

2

1
+ b2x

2

2
+ b3x

2

3
= 0

This class contains examples of elliptic curves with arbitrary j-invariants.

The main result is

N(C, B) ⌧" B
1/2�3/392+" .
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On the Báez-Duarte criterion for

the Riemann hypothesis

Goubi Mouloud

This work is an attempt to prove the existence of a Family of Beurling
functions satisfying Báez-Duarte Criterion for Riemann Hypothesis.

Let the Hilbert space H = L2 �
[0,+1[, t�2dt

�
with the inner product

h f , gi =
Ø +1
0 f (t) g (t)t�2dt. For any integer n let as consider the

functions en defined over H by en (t) =
�
t
n

 
. Only the Beurling

functions are of the form fn = ce1 + gn where gn is the sum
Õn

k=2 ckvk
and vk (t) = en(btc).
Supposing that

Õ
k�0

gn(k)
k(k+1) , he1, gni and

Õ
k�0

g2
n(k)

k(k+1) are converging
respectively to ↵, � and � when n tends to infinity. And using technics
from Hilbert geometry, the limit when n tends to infinity of the distance
of the characteristic function � of the interval [1,+1[ to the subspace
generated by fn ([2], [3]) is

lim
n!1

d2
n (�, fn) = 1 �

(1 � �)2c2 + 2c(1 � �)↵ + ↵2

c2(log 2⇡ � �) + 2c� + �

By means of Báez-Duarte criterion [1] the Riemann hypothesis holds
if ⇣

log 2⇡ + � � �2
� 1

⌘
c2 + 2 (� � (1 � �)↵) c + � � ↵2 = 0.
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This expression is an equation of second degree on c and it’s discrimi-
nant �0 is only negative. If �0 = 0 we get c = (1��)↵��

log 2⇡���(1��)2
.
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Computing isomorphism classes
of abelian varieties over finite

fields
Stefano Marseglia

Deligne proved in [Del69] that the category of ordinary abelian va-

rieties over a finite field Fq is equivalent to the category of free finitely

generated Z-modules endowed with an endomorphism satisfying cer-

tain easy-to-state axioms. In [CS15] Centeleghe and Stix extended

this equivalence to all isogeny classes of abelian varieties over whose

characteristic polynomial of Frobenius does not have real roots under

the assumption that q is a prime number. Let C be an isogeny class

in source category of Deligne or Centeleghe-Stix’ equivalences and let

h be the Weil polynomial associated to C. Assume that h is square-

free and denote by K the Q-algebra Q[x]/(h). Put F = x mod h and

V = q/V and consider the order R = Z[F,V] in K . Using Deligne’s

and Centeleghe-Stix’ equivalences we obtain the following:

Theorem 1 [Mar18b] There is an equivalence between the category
of abelian varieties in C and the category of fractional R-ideals in K .

In particular, we get a bijection between the isomorphism classes of

abelian varieties in C and the ideal class monoid of R. There are

well known algorithms to compute the group of invertible ideal classes

of an order but not much can be found in the literature about non-

invertible ideals. In [Mar18a] we explain how to e�ectively compute
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representatives of all ideal classes for any order in a product of number

fields, allowing us to compute the isomorphism classes of the abelian

varieties in C. Moreover, using results of Howe from [How95], in

the ordinary case we are able to translate the notion of dual variety,

polarizations and automorphisms (of the polarized abelian variety) in

the category of fractional R-ideal and we provide algorithms to compute

them, see [Mar18b].
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Reductions of elliptic curves
Antonella Perucca

This is joint work with Davide Lombardo [3] and Peter Bruin [1].
The problem under consideration can be formulated for connected com-
mutative algebraic groups, and our main results hold for all products of
abelian varieties and tori. For simplicity, we focus here on the case of
elliptic curves and present a selection of the results.

Let E be an elliptic curve defined over a number field K , and fix some
prime number `. Let ↵ 2 E(K) be a point of infinite order and consider
the primes p of K for which the reduction of ↵modulo p is well-defined
and has order coprime to `. The aim of this paper is understanding the
natural density Dens`(↵) of this set (which is known to exist).

In [2], Jones and Rouse considered the Galois action on the tree of
`1 division points over ↵, which encodes the Kummer representation
for ↵ and the `-adic representation attached to E . By refining their
method, we are able to remove all assumptions and prove:

Theorem 1 If G is the image of the `-adic representation, we have

Dens`(↵) = cKummer ·
π
G
`�v` (det(x�I )) · w(x) dµG(x) ,

where µG is the normalized Haar measure on G, where the rational

number cKummer measures the failure of maximality for the Kummer

extensions of ↵, and where the function w describes the Galois action
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on the tree of `1 division points over ↵ (its values can be either zero or

a power of ` with exponent in Z0).

With di�erent techniques we prove a completely new result:

Theorem 2 The density Dens`(↵) is a rational number (strictly be-

tween 0 and 1), and there is a theoretical algorithm that computes it.

The minimal denominator of Dens`(↵) divides, up to a power of `, the

expression (` � 1)(`2 � 1)2(`12 � 1).

The power of ` in the minimal denominator of Dens`(↵) cannot be
uniformly bounded, therefore we give a bound depending on ↵.

We also generalize the above results by replacing ` with a (square-
free) integer m.
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Non-Wieferich primes and
Euclidean algorithm in number

fields
Srinivas Kotyada and

Subramani Muthukrishnan

An odd prime p is said to be a non-Wieferich prime with respect to

the base a if

ap�1 . 1 (mod p2
). (1)

The following are some important results on non-Wieferich primes.

Theorem 1 (J.H. Silverman [1]) For any fixed ↵ 2 Q⇥, ↵ , ±1, and

assuming the abc conjecture, card
�
p  x : ↵p�1 . 1 (mod p2

)
 
�↵

log x as x ! 1.

Theorem 2 (M. Ram Murty, H. Graves [2]) For any a � 2 and any

fixed k � 2, there are � log x/log log x primes p  x such that

ap�1 . 1 (mod p2
) and p ⌘ 1 (mod k), under the assumption of abc

conjecture.

Recently, the authors generalized the notion of non-Wieferich primes

to algebraic number fields [3] and proved the following theorems.
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Theorem 3 [3] Let K = Q(
p

m) be a real quadratic field of class

number one and assume that the abc conjecture holds true in K . Then

there are infinitely many non-Wieferich primes in OK with respect to

the unit " satisfying |" | > 1.

Theorem 4 [3] Let K be any algebraic number field of class number

one and assume that the abc conjecture holds true in K . Let ⌘ be a

unit in OK satisfying |⌘ | > 1 and |⌘(j) | < 1 for all j , 1, where ⌘(j) is

the jth conjugate of ⌘. Then there exist infinitely many non-Wieferich

primes in K with respect to the base ⌘.

By computing non-Wieferich primes in number fields the authors

proved that certain cyclic cubic fields of class number one are Eu-

clidean (see [4] for details).
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Conjectural estimates on the
Mordell-Weil and the

Tate-Shavarevich groups of an
abelian variety
Andrea Surroca Ortiz

The Mordell-Weil theorem states that the group of rational points
A(K) on an Abelian variety A defined over a number field K is finitely
generated: A(K) ' A(K)tors � ZP1 � . . . � ZPr . While there exist
results on the torsion part, the free part remains less tractable. Even in
the particular case of an elliptic curve, there is no way, in general, to
compute the rank r or a set of generators {Pi}i=1,...,r of this group.

The proof of the Mordell-Weil theorem involves the Tate-Shafarevich
group X(A/K) of A/K , which measures the obstruction to the Hasse
principle. Even if it is not easy to construct a non trivial element of this
group, it is still unknown, in the general case, if it is finite.

For some applications, it would be su�cient to bound the "size" of
the invariants of the variety. We explore here how could be bounded

1- the product |X(A/K)| · Reg(A/K) of the order of X(A/K) and
the canonical regulator,

2- the canonical height ĥL(Pi) of a well chosen system of generators
of the free part of A(K), as well as

3- the order |X(A/K)| of the Tate-Shafarevic group.
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Our bounds are implied by strong but nowadays classical conjectures.
We follow the approach of Manin, who proposed a conditional algo-
rithm for finding a basis for the non-torsion rational points of an elliptic
curve over Q. We extend Manin’s method to an Abelian variety of ar-
bitrary dimension, defined over an arbitrary number field. Our bounds
are explicit in all the parameters: the Faltings’ height h = hFalt (A/K)
(which measures the arithmetic complexity of the variety), the absolute
value F = |NK/QFA/K | of the norm of the conductor (which gives
information about the places of bad reduction), the dimension g of A,
the Mordell-Weil rank r = rk(A(K)), the degree d = [K : Q], and the
absolute value DK of the discriminant of K .

In this work,
- with point 1, we refine a conjecture of Hindry (related works in

di�erent settings have been done also by Hindry-Pacheco and Gri�on),
and extend to the general case of A/K ,

- with point 2, a conjecture of Lang, for elliptic curves over Q,
- with point 3, a result by Goldfeld and Szpiro, towards their conjec-

ture |X(E/K)| = O(F 1/2+✏
E/K ). Furthermore, we improve their result in

the one dimensional case over the field of rational numbers.
The method is based on the Hasse-Weil conjecture which suppose

that the L-series of A has an analytic continuation to C and satisfies a
functional equation at 1, and on the Birch-Swinnerton-Dyer conjecture,
which translates analytic information into geometric and arithmetic in-
formation. We suppose that |X(A/K)| is finite, and conclude with Min-
skowski’s theorem, since the Néron-Tate pairing relates the regulator
to the volume of the fundamental domain of the lattice A(K)/A(K)tors.
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